First, you must know these formula d(e^f(x) = f'(x)e^x dx, e^a+b=e^a.e^b, and d(sinx) = cosxdx, secx = 1/ cosx
(secx)dy/dx=e^(y+sinx), implies <span>dy/dx=cosx .e^(y+sinx), and then
</span>dy=cosx .e^(y+sinx).dx, integdy=integ(cosx .e^(y+sinx).dx, equivalent of
integdy=integ(cosx .e^y.e^sinx)dx, integdy=e^y.integ.(cosx e^sinx)dx, but we know that d(e^sinx) =cosx e^sinx dx,
so integ.d(e^sinx) =integ.cosx e^sinx dx,
and e^sinx + C=integ.cosx e^sinxdx
finally, integdy=e^y.integ.(cosx e^sinx)dx=e^2. (e^sinx) +C
the answer is
y = e^2. (e^sinx) +C, you can check this answer to calculate dy/dx
You can divide 1/2 by 1/4
that'll leave you with 1/8, which is smaller than 1/4
Answer: 18.5
Step-by-step explanation: Steps are down.
1. Move the decimal point all the way to the right.
2. Put a decimal point in the quotient exactly as the one in the dividend.
3. Divide the tens column by the divisor.
4. Multiply the divisor by the quotient.
5. Subtract the product by the divisor.
6. Bring down what's left, then repeat.
Answer:
sad
Step-by-step explanation: