Given:
Length of the ladder = 9.85 m
The height to the top of the ladder is 5 m more than the distance between the wall and the foot of the ladder.
To find:
The height to the top and the distance between the wall and the foot of the ladder.
Solution:
let x be the distance between the wall and the foot of the ladder. Then the height to the top of the ladder is (x+5).
Pythagoras theorem: In a right angle triangle,

In the given situation, hypotenuse is the length of ladder, i.e., 9.85 m. The base is x m and the height is (x+5) m.
Using the Pythagoras theorem, we get




Here,
. Using the quadratic formula, we get



Approximating the value, we get




Distance cannot be negative so 
Now we have 


Therefore, the base is 4 m and the height is 9 m.