Answer:
{58.02007 , 61.97993]
Step-by-step explanation:
Data are given in the question
Sample of cars = n = 121
Average speed = sample mean = 60
Standard deviation = sd = 11
And we assume
95% confidence t-score = 1.97993
Therefore
Confidence interval is
![= [60 - \frac{1.97993 \times 11}{\sqrt{121} }] , [60 + \frac{1.97993 \times 11}{\sqrt{121} }]](https://tex.z-dn.net/?f=%3D%20%5B60%20-%20%20%5Cfrac%7B1.97993%20%5Ctimes%2011%7D%7B%5Csqrt%7B121%7D%20%7D%5D%20%2C%20%20%5B60%20%2B%20%20%5Cfrac%7B1.97993%20%5Ctimes%2011%7D%7B%5Csqrt%7B121%7D%20%7D%5D)
= {58.02007 , 61.97993]
Basically we applied the above formula to determine the confidence interval
7/25
First thing you want to do is put it over 100
28/100
Now divide by 4
28÷4=7
100÷4=25
Answer:
−2x4−18x3y
Step-by-step explanation:
Let's simplify step-by-step.
(−3x2)(xy+2x2)+7x4−3x3(5y+x)
Distribute:
=(−3x2)(xy)+(−3x2)(2x2)+7x4+−3x4+−15x3y
=−3x3y+−6x4+7x4+−3x4+−15x3y
Combine Like Terms:
=−3x3y+−6x4+7x4+−3x4+−15x3y
=(−6x4+7x4+−3x4)+(−3x3y+−15x3y)
=−2x4+−18x3y
Answer:
I think B. but thats me
Step-by-step explanation: