Answer:
83.33 cajas estándar de frambuesas y 51.67 cajas de lujo de frambuesas.
Step-by-step explanation:
Representemos el número de cajas como
A = caja estándar de frambuesas
B = caja de lujo de frambuesas
Caja estándar de frambuesas = $ 7 Caja de lujo de frambuesas = 10.
A + B = 135 ......... Ecuación 1
B = 135 - A
7A + 10B = 1100 ........... Ecuación 2
Sustituir
135 - A para B en la ecuación 2
7A + 10 (135 - A) = 1100
7A + 1350 -10A = 1100
7A - 10A = 1100-1350
-3A = - 250
A = 250/3
A = 83.33 cajas
Sustituye 83.33 por A en la ecuación 1
A + B = 135
83,33 + B = 135
B = 135 - 83.33 = 51.67 cajas
Por lo tanto, vendió,
83.33 cajas estándar de frambuesas y 51.67 cajas de lujo de frambuesas.
Answer:
P = 2x + 2y + 8
Step-by-step explanation:
The perimeter (P) of a rectangle is calculated as
P = 2(l + w) ← l is length and w is width , then
P = 2(x + 5 + y - 1) ← distribute parenthesis
= 2x + 10 + 2y - 2 ← collect like terms
= 2x + 2y + 8
Answer:
(-3,4)
Step-by-step explanation:
x + 2y = 5
-3 + (2*4) = 5
-3 + 8 = 5
5 = 5
2x + 3y = 6
(2*-3) + (3*4)=6
-6 + 12 = 6
6 = 6
Answer:
a.
b.
\
c.
Step-by-step explanation:
Let
are the events that denotes the good drive, medium drive and poor risk driver.

Let A be the event that denotes an accident.



The company sells Mr. Brophyan insurance policy and he has an accident.
a.We have to find the probability Mr.Brophy is a good driver
Bayes theorem,
We have to find 
Using the Bayes theorem

Substitute the values then we get


b.We have to find the probability Mr.Brophy is a medium driver

c.We have to find the probability Mr.Brophy is a poor driver
