Answer:
162
Step-by-step explanation:
Divide the value by 1728 and you get your answer of 162. Hope this was helpful. :)
Answer:
(0, 1)
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
<u>Algebra I</u>
- Solving systems of equations using substitution/elimination
Step-by-step explanation:
<u>Step 1: Define Systems</u>
y + 5x = 1
5y - x = 5
<u>Step 2: Rewrite Systems</u>
y + 5x = 1
- Subtract 5x on both sides: y = 1 - 5x
<u>Step 3: Redefine Systems</u>
y = 1 - 5x
5y - x = 5
<u>Step 4: Solve for </u><em><u>x</u></em>
<em>Substitution</em>
- Substitution in <em>y</em>: 5(1 - 5x) - x = 5
- Distribute 5: 5 - 25x - x = 5
- Combine like terms: 5 - 26x = 5
- Isolate <em>x</em> term: -26x = 0
- Isolate <em>x</em>: x = 0
<u>Step 5: Solve for </u><em><u>y</u></em>
- Define equation: 5y - x = 5
- Substitute in <em>x</em>: 5y - 0 = 5
- Subtract: 5y = 5
- Isolate <em>y</em>: y = 1
To find:
An irrational number that is greater than 10.
Solution:
Irritation number: It cannot be expression in the form of , where, are integers.
For example: .
We know that square of 10 is 100. So, square root of any prime number is an example of an irrational number that is greater than 10.
First prime number after 100 is 101.
Required irrational number
Therefore, is an irrational number that is greater than 10.
Answer:
tell me the question
Step-by-step explanation: