Answer:
c. bivalents.
Explanation:
In Meiosis a bivalents are formed during the first stage of meiosis which is the prophase. The bivalent consist of a paired chromosome and four chromatids i.e two chromosomes in a tetrad. one chromosome comes from each parent.
In mitosis, a bivalent is not formed. There is the presence of chromatids, homologs, centromeres and spindles during mitosis and meiosis.
12is the speed of 6 seconds cause the bigger the secs the slower
The shape of chromatin, which can be either open (euchromatin) or compact (heterochromatin), is dynamically regulated during the phases of the cell cycle is the two types of conformations.
- The main distinction between conformation and configuration is that whereas the configurations of the same molecule do not easily interconvert, their conformations do.
- With a predefined location in the nucleus and a certain form, such as metacentric, submetacentric, acrocentric, or telocentric, chromosomes are primarily heterochromatic in this stage.
- All DNA-mediated processes, including gene regulation, can be significantly impacted by the degree of nucleosomal packaging.
- While heterochromatin (tight or closed chromatin) is more compact and resistant to factors that need to access the DNA template, euchromatin (loose or open chromatin) structure is permissible for transcription.
To know more about chromatin check the below link:
brainly.com/question/691971
#SPJ4
<span> Basically the male will have CC, the hen will have cc, and neither of them will have I. The key thing is that _all_ the chicks are coloured.
The male must have at least 1 C to be coloured, and cannot possess the dominant I. The hen has cc and/or an I to not be coloured.
That one chick is coloured would tell you little - only that the hen couldn't have 2 inhibitor alleles because otherwise the chick would have to have one and it doesn't.
However, for all of many chicks to be coloured, that means that the hen can't have any inhibitor alleles (otherwise around 50% would be white for that reason alone).
So to be colourless, the hen must be cc. However, if the male had only 1 colour allele (ie it was Cc) that would still mean that 50% of the chicks would be Cc (daddy's 'c' and one of mummy's 'c's).
Hope this helps please award brainly :)
</span>