Answer:
![15 \sqrt[3]{2}](https://tex.z-dn.net/?f=15%20%5Csqrt%5B3%5D%7B2%7D%20)
Step-by-step explanation:
![{(27 \times 250)}^{ \frac{1}{3} } = {(27 \times 125 \times 2)}^{ \frac{1}{3} } \\ = {27}^{ \frac{1}{3} } \times {125}^{ \frac{1}{3} } \times {2}^{ \frac{1}{3} } \\ = \sqrt[ 3]{27} \times \sqrt[3]{125} \times \sqrt[3]{2} \\ = \sqrt[3]{ {3}^{3} } \times \sqrt[3]{ {5}^{3} } \times \sqrt[3]{2} \\ = 3 \times 5 \times \sqrt[3]{2} \\ = 15 \sqrt[3]{2}](https://tex.z-dn.net/?f=%20%7B%2827%20%5Ctimes%20250%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%3D%20%20%7B%2827%20%5Ctimes%20125%20%5Ctimes%202%29%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%7B27%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5Ctimes%20%20%7B125%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5Ctimes%20%20%7B2%7D%5E%7B%20%5Cfrac%7B1%7D%7B3%7D%20%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%5B%203%5D%7B27%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B125%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%7D%20%20%5C%5C%20%20%3D%20%20%5Csqrt%5B3%5D%7B%20%7B3%7D%5E%7B3%7D%20%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B%20%7B5%7D%5E%7B3%7D%20%7D%20%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%7D%20%20%5C%5C%20%20%3D%203%20%5Ctimes%205%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B2%7D%20%20%5C%5C%20%20%3D%2015%20%5Csqrt%5B3%5D%7B2%7D%20)
Answer:
a) The original conditional statement
You can use factors to solve. Determine all the factor pairs of 24, find the two that are two numbers apart.
1, 24 X
2, 12 X
3, 8 X
4, 6 YES!
Algebraic way to solve using Quadratics:
l = 2 + w
A = lw
A = (2 + w)w Substitute (2 + w) for l
24 = (2 + w)w Substitute 24 in for the area
24 = 2w + w^2 Distribute
w^2 + 2w - 24 = 0 Set equal to 0 (put in standard form)
(w + 6) (w - 4) = 0 Factor
w + 6 = 0 and w - 4 = 0 Set each factor equal to 0.
So w= -6 or w = 4 ... -6 makes no sense for a length! So the width must be 4 and the length will be 4 + 2, which is 6.
Answer:66
Step-by-step explanation:
Y=mx+b
10=-4*12+b
10=-48+b
b=58
r=-4(-2)+58
r=66
Answer:
The answer is a. cos2x - sin2x - sin x. Use the rule: cos2x = (cos^2)x - (sin^2)x. So, substitute cos2x in the expression: cos2x - sinx = ((cos^2)x - (sin^2)x) - sinx = (cos^2)x - (sin^2)x - sinx. Therefore, choice a. is correct choice.