We have to find the value of x from the given equation.
- (x - 2)(x² - 2x + 2) = 0 is a quadratic equation, so it will have two values.
Step: Write the equation in simplest form.
Step: Solve the problem by spiltting method.
- (x-2)(x² - x -x + 1) = 0
- (x - 2)(x²-x - x + 1) = 0
- (x - 2) [x(x - 1) -1(x -1)]
- (x - 2)[(x-1)(x-1)]
Step: Solve the problem with using algebraic formula.
{x-1](x-1)
Step : We have used a²-b² to solve the problem.
(x-2)(x² - x -x + 1) = 0
(x - 2)(x²-x - x + 1) = 0
(x - 2) [x(x - 1) -1(x -1)]
(x - 2)[(x-1)(x-1)]
Therefore, the possible factorization is (x - 2)[(x-1)(x-1)].
Answer: 60
Step-by-step explanation:
The three interior (inside) angles in a triangle will always add up to 180°.
60 + 60 + y = 180
120 + y = 180
-120
y = 60
60 * 3 = 180
Top left, none
middle, many
top right, one
bottom left, none
if you extend the top and bottom left graphs, they won’t intercept. but if u extend the middle graph, they always intercept. and the top right graph only intercepts once
Answer:
a) the probability that the minimum of the three is between 75 and 90 is 0.00072
b) the probability that the second smallest of the three is between 75 and 90 is 0.396
Step-by-step explanation:
Given that;
fx(x) = { 1/5 ; 50 < x < 100
0, otherwise}
Fx(x) = { x-50 / 50 ; 50 < x < 100
1 ; x > 100
a)
n = 3
F(1) (x) = nf(x) ( 1-F(x)^n-1
= 3 × 1/50 ( 1 - ((x-50)/50)²
= 3/50 (( 100 - x)/50)²
=3/50³ ( 100 - x)²
Therefore P ( 75 < (x) < 90) = ⁹⁰∫₇₅ 3/50³ ( 100 - x)² dx
= 3/50³ [ -2 (100 - x ]₇₅⁹⁰
= (3 ( -20 + 50)) / 50₃
= 9 / 12500 = 0.00072
b)
f(k) (x) = nf(x) ( ⁿ⁻¹_k₋ ₁) ( F(x) )^k-1 ; ( 1 - F(x) )^n-k
Now for n = 3, k = 2
f(2) (x) = 3f(x) × 2 × (x-50 / 50) ( 1 - (x-50 / 50))
= 6 × 1/50 × ( x-50 / 50) ( 100-x / 50)
= 6/50³ ( 150x - x² - 5000 )
therefore
P( 75 < x2 < 90 ) = 6/50³ ⁹⁰∫₇₅ ( 150x - x² - 5000 ) dx
= 99 / 250 = 0.396