1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vilka [71]
3 years ago
10

2x = 6+ (-18) I need the answer

Mathematics
1 answer:
JulijaS [17]3 years ago
7 0

Answer:

x= -6

Step-by-step explanation

1: subtract

2:  divide

3: simplify  

You might be interested in
How well can you apply Boyle’s law to this sample of gas that experiences changes in pressure and volume? Assume that temperatur
emmasim [6.3K]

Answer:

A = 1.0 L

B = 0.50 atm

C = 0.60 atm

D = 4.0 L

Step-by-step explanation:

According to the Boyle's law, the volume of a gas is inversely proportional to its volume. If we consider an initial state (1) and a final state (2):

P₁ × V₁ = P₂ × V₂

A

P₁ × V₁ = P₂ × V₂

1.5 atm × 2.0 L = 3.0 atm × A

A = 1.0 L

B

P₁ × V₁ = P₂ × V₂

1.5 atm × 2.0 L = B × 6.0 L

B = 0.50 atm

C

P₁ × V₁ = P₂ × V₂

1.5 atm × 2.0 L = C × 5.0 L

C = 0.60 atm

D

P₁ × V₁ = P₂ × V₂

1.5 atm × 2.0 L = 0.75 atm × D

D = 4.0 L

4 0
4 years ago
Read 2 more answers
Please help me! Need answers
RSB [31]
Ok, this definition of f is just a bunch of points (4 to be exact).

so if point (a,b) is part of f, then f(a)=b

f(1) is about point (1,0), so f(1)=0.
g(1) = 1 (due to point (1,1))
g(2/3) = 0
f(2) = 3/4
g(-2) = 3
f(π) = -2

just a lookup once you see what is happening
6 0
3 years ago
Soccer or golf? im giving brainliest if that sounds good to you guys.​
vovikov84 [41]

Answer:

soccer bruv

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
HELP ME ASPA!!!!!<br> Round your answer to the nearest hundredth.<br> AC=
vladimir1956 [14]
Hello :) ok so to find AC you would have to use sin. It would be sin70= x/4. To find AC you would have to multiply 4 by sin70 which is 3.758 or to the nearest hundredth would be 3.76. I hope I helped, if you need a more in depth explanation lmk
3 0
3 years ago
1. cot x sec4x = cot x + 2 tan x + tan3x
Mars2501 [29]
1. cot(x)sec⁴(x) = cot(x) + 2tan(x) + tan(3x)
    cot(x)sec⁴(x)            cot(x)sec⁴(x)
                   0 = cos⁴(x) + 2cos⁴(x)tan²(x) - cos⁴(x)tan⁴(x)
                   0 = cos⁴(x)[1] + cos⁴(x)[2tan²(x)] + cos⁴(x)[tan⁴(x)]
                   0 = cos⁴(x)[1 + 2tan²(x) + tan⁴(x)]
                   0 = cos⁴(x)[1 + tan²(x) + tan²(x) + tan⁴(4)]
                   0 = cos⁴(x)[1(1) + 1(tan²(x)) + tan²(x)(1) + tan²(x)(tan²(x)]
                   0 = cos⁴(x)[1(1 + tan²(x)) + tan²(x)(1 + tan²(x))]
                   0 = cos⁴(x)(1 + tan²(x))(1 + tan²(x))
                   0 = cos⁴(x)(1 + tan²(x))²
                   0 = cos⁴(x)        or         0 = (1 + tan²(x))²
                ⁴√0 = ⁴√cos⁴(x)      or      √0 = (√1 + tan²(x))²
                   0 = cos(x)         or         0 = 1 + tan²(x)
         cos⁻¹(0) = cos⁻¹(cos(x))    or   -1 = tan²(x)
                 90 = x           or            √-1 = √tan²(x)
                                                         i = tan(x)
                                                      (No Solution)

2. sin(x)[tan(x)cos(x) - cot(x)cos(x)] = 1 - 2cos²(x)
              sin(x)[sin(x) - cos(x)cot(x)] = 1 - cos²(x) - cos²(x)
   sin(x)[sin(x)] - sin(x)[cos(x)cot(x)] = sin²(x) - cos²(x)
                               sin²(x) - cos²(x) = sin²(x) - cos²(x)
                                         + cos²(x)              + cos²(x)
                                             sin²(x) = sin²(x)
                                           - sin²(x)  - sin²(x)
                                                     0 = 0

3. 1 + sec²(x)sin²(x) = sec²(x)
           sec²(x)             sec²(x)
      cos²(x) + sin²(x) = 1
                    cos²(x) = 1 - sin²(x)
                  √cos²(x) = √(1 - sin²(x))
                     cos(x) = √(1 - sin²(x))
               cos⁻¹(cos(x)) = cos⁻¹(√1 - sin²(x))
                                 x = 0

4. -tan²(x) + sec²(x) = 1
               -1               -1
      tan²(x) - sec²(x) = -1
                    tan²(x) = -1 + sec²
                  √tan²(x) = √(-1 + sec²(x))
                     tan(x) = √(-1 + sec²(x))
            tan⁻¹(tan(x)) = tan⁻¹(√(-1 + sec²(x))
                             x = 0
5 0
3 years ago
Other questions:
  • If RT is a diameter of Q, Find m A.88°<br> B.89°<br> C.92°<br> D.101°
    15·1 answer
  • Find the sum which amounts to Rs 9261 at 10% per annum compound interest for 18 months ,interest payable half yearly
    9·1 answer
  • What is the value of x?
    14·1 answer
  • Isaac went shopping for some shoes. In the Nike store he saw a pair of shoes that cost $160. The sign said they were
    7·2 answers
  • guys i need huge help. this isn’t a “brainly” question but i do my work online, and i have over 150 OVERDUE assignments. i’ve be
    15·2 answers
  • Shane has a segment with endpoints C(3, 4) and D(11, 3) that is divided by a point E such that CE and DE form a 3:5 ratio. He kn
    13·1 answer
  • Can someone solve this? <br> 25^2x-3=125^x+1
    10·2 answers
  • Find y (-3,y) and (1,-7) m=-4
    9·1 answer
  • Can you guys help me I need It now​
    12·2 answers
  • Need answer quick please answer quick
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!