Answer:
9
Step-by-step explanation:
if z=8 then z^2 would be 64, which is not equal to 80
iz z=9 then z^2 would be 81, which is closer to 80 than 64
therefore, 9 is the whole number than z would be closest to
Answer:
The age of the horse, in human years, when Alex was born can be determined by simply deducting the Current age of Alex from the Current age of the horse in human years.
Therefore, the age of the horse, in human years, when Alex was born was 42 years.
Step-by-step explanation:
Current age of Alex = 8
Current age of the horse in human years = 50
Since the age of the horse is already stated in human years, it implies there is no need to convert the age of the horse again.
Therefore, since Alex is a human who was born 8 years ago, the age of the horse, in human years, when Alex was born can be determined by simply deducting the Current age of Alex from the Current age of the horse in human years as follows:
The age of the horse, in human years, when Alex was born = 50 - 8 = 42
Therefore, the age of the horse, in human years, when Alex was born was 42 years.
This can be presented in a table as follows:
Age of Alex Age of the Horse (in human years)
Eight years ago 0 42
Current age 8 50
Answer:

Step-by-step explanation:

Hope this helps you.
<em>Can</em><em> </em><em>I</em><em> </em><em>have</em><em> </em><em>the</em><em> </em><em>brainliest</em><em> </em><em>please</em><em>?</em>
Answer:
(1) 56 miles/hour
Step-by-step explanation:
We need to find the average rate of change from t = 2 to t = 9.
At t = 2 hours, d = 106 miles.
At t = 9 hours, d = 498 miles.
The average rate of change in function f(x) from x = a to x = b is
[f(b) - f(a)]/(b - a)
average rate of change from t = 2 to t = 9 =
(498 - 106)/(9 - 2) = 392/7 = 56
Answer: (1) 56 miles/hour
I believe the total is $211.27.
After doing multiple searches on the internet, I believe that tax rate is a percentage of the product that is added to the total cost.
9 percent of 193.84 is 17.4456, which rounds up to 17.44, and 17.44 added to 193.84 is 211.27.
<em>Please, if something isn't correct here, don't refrain to tell me, and I will correct my mistake. Thank you.</em>