The area of the convex polygon is 43/2 square units
<h3>How to determine the area of the convex polygon?</h3>
The vertices are given as:
(0,5), (-1,2), (4,4), (-3,-4) and (2,0)
The area is then calculated as:
![A = \frac 12(\left[\begin{array}{cc}x_1&x_2\\y_1&y_2\end{array}\right] + \left[\begin{array}{cc}x_2&x_3\\y_2&y_3\end{array}\right] + ....+\left[\begin{array}{cc}x_n&x\\y_n&y\end{array}\right] )](https://tex.z-dn.net/?f=A%20%3D%20%5Cfrac%2012%28%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dx_1%26x_2%5C%5Cy_1%26y_2%5Cend%7Barray%7D%5Cright%5D%20%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dx_2%26x_3%5C%5Cy_2%26y_3%5Cend%7Barray%7D%5Cright%5D%20%2B%20....%2B%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7Dx_n%26x%5C%5Cy_n%26y%5Cend%7Barray%7D%5Cright%5D%20%29)
So, we have:

Evaluate

Remove the absolute bracket

This gives

Hence, the area of the convex polygon is 43/2 square units
Read more about convex polygon at:
brainly.com/question/14522707
#SPJ1
The answer is -1
8,5,2,-1,-4,-7
Answer:
C
Step-by-step explanation:
first, let's find the midpoint of line TR.
((x1+x2)/2, (y1+y2)/2)
(4+8)/2= x-coordinate= 6
(-4+-4)/2=y-coordinate=-4
(6,-4) is the point of A
now, use the distance formula for U (5,-6) and A (6,-4)
d= sqrt (x2-x1)^2 + (y2-y1)^2
d= sqrt (6-5)^2 + (-4-(-6))^2
d= sqrt (1+4)
d= sqrt 5
C. sqrt 5
Answer:
Step-by-step explanation:
we assume that we starts with n=1
a(1)=3*1+7=10
a(2)=6+7=13
a(3)=9+7=16
a(4) will be 19, a(5)=22 and so on