Answer:
Step-by-step explanation:
g(t)=t^2 - t
f(x) = (1 + x)
g(f(x)) = f(x)^2 - f(x)
g(f(x)) = (x + 1)^2 - x - 1
g(f(0)) = (0 +1)^2 - x - 1
g(f(0)) = 1 - 1 - 1 = -1
================================
f(x) = 1 + x
f(g(t)) = 1 + g(t)
f(g(t)) = 1 + t^2 - t
f(g(0)) = 1 + 0 - 0
f(g(0)) = 1
The answer I'm getting is 0.
Answer:
? = 50°
Step-by-step explanation:
? = 180° - 130° = 50°
Answer:
The simplified form of the expression is ![\sqrt[3]{2x}-6\sqrt[3]{x}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2x%7D-6%5Csqrt%5B3%5D%7Bx%7D)
Step-by-step explanation:
Given : Expression ![7\sqrt[3]{2x}-3\sqrt[3]{16x}-3\sqrt[3]{8x}](https://tex.z-dn.net/?f=7%5Csqrt%5B3%5D%7B2x%7D-3%5Csqrt%5B3%5D%7B16x%7D-3%5Csqrt%5B3%5D%7B8x%7D)
To Simplified : The expression
Solution :
Step 1 - Write the expression
![7\sqrt[3]{2x}-3\sqrt[3]{16x}-3\sqrt[3]{8x}](https://tex.z-dn.net/?f=7%5Csqrt%5B3%5D%7B2x%7D-3%5Csqrt%5B3%5D%7B16x%7D-3%5Csqrt%5B3%5D%7B8x%7D)
Step 2- Simplify the roots and re-write as
and 
![7\sqrt[3]{2x}-3\times2\sqrt[3]{2x}-3\times2\sqrt[3]{x}](https://tex.z-dn.net/?f=7%5Csqrt%5B3%5D%7B2x%7D-3%5Ctimes2%5Csqrt%5B3%5D%7B2x%7D-3%5Ctimes2%5Csqrt%5B3%5D%7Bx%7D)
Step 3- Solve the multiplication
![7\sqrt[3]{2x}-6\sqrt[3]{2x}-6\sqrt[3]{x}](https://tex.z-dn.net/?f=7%5Csqrt%5B3%5D%7B2x%7D-6%5Csqrt%5B3%5D%7B2x%7D-6%5Csqrt%5B3%5D%7Bx%7D)
Step 4- Taking
common from first two terms
![\sqrt[3]{2x}(7-6)-6\sqrt[3]{x}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2x%7D%287-6%29-6%5Csqrt%5B3%5D%7Bx%7D)
![\sqrt[3]{2x}-6\sqrt[3]{x}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2x%7D-6%5Csqrt%5B3%5D%7Bx%7D)
Therefore, The simplified form of the expression is ![\sqrt[3]{2x}-6\sqrt[3]{x}](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B2x%7D-6%5Csqrt%5B3%5D%7Bx%7D)