Answer:
Therefore the probability that a pen from the first box and a crayon from the second box are selected is 
Step-by-step explanation:
Probability:
The ratio of the number of favorable outcomes to the number all possible outcomes of the event.

Given that,
Three plain pencils and 5 pens are contained by the first box.
Total number of pens and pencils is =(3+5)=8
The probability that a pen is selected from the first box is
=P(A)


A second box contains three colored pencils and three crayons.
Total number of pencils and crayons is =(3+3)=6
The probability that a crayon is selected from the second box is
=P(B)


Since both events are mutually independent.
The required probability is multiple of the events
Therefore the required probability is


your answer would be 2x - y + 3 = 0
Answer:
(a) See attachment for tree diagram
(b) 24 possible outcomes
Step-by-step explanation:
Given


Solving (a): A possibility tree
If urn 1 is selected, the following selection exists:
![B_1 \to [R_1, R_2, R_3]; R_1 \to [B_1, R_2, R_3]; R_2 \to [B_1, R_1, R_3]; R_3 \to [B_1, R_1, R_2]](https://tex.z-dn.net/?f=B_1%20%5Cto%20%5BR_1%2C%20R_2%2C%20R_3%5D%3B%20R_1%20%5Cto%20%5BB_1%2C%20R_2%2C%20R_3%5D%3B%20R_2%20%5Cto%20%5BB_1%2C%20R_1%2C%20R_3%5D%3B%20R_3%20%5Cto%20%5BB_1%2C%20R_1%2C%20R_2%5D)
If urn 2 is selected, the following selection exists:
![B_2 \to [B_3, R_4, R_5]; B_3 \to [B_2, R_4, R_5]; R_4 \to [B_2, B_3, R_5]; R_5 \to [B_2, B_3, R_4]](https://tex.z-dn.net/?f=B_2%20%5Cto%20%5BB_3%2C%20R_4%2C%20R_5%5D%3B%20B_3%20%5Cto%20%5BB_2%2C%20R_4%2C%20R_5%5D%3B%20R_4%20%5Cto%20%5BB_2%2C%20B_3%2C%20R_5%5D%3B%20R_5%20%5Cto%20%5BB_2%2C%20B_3%2C%20R_4%5D)
<em>See attachment for possibility tree</em>
Solving (b): The total number of outcome
<u>For urn 1</u>
There are 4 balls in urn 1

Each of the balls has 3 subsets. i.e.
![B_1 \to [R_1, R_2, R_3]; R_1 \to [B_1, R_2, R_3]; R_2 \to [B_1, R_1, R_3]; R_3 \to [B_1, R_1, R_2]](https://tex.z-dn.net/?f=B_1%20%5Cto%20%5BR_1%2C%20R_2%2C%20R_3%5D%3B%20R_1%20%5Cto%20%5BB_1%2C%20R_2%2C%20R_3%5D%3B%20R_2%20%5Cto%20%5BB_1%2C%20R_1%2C%20R_3%5D%3B%20R_3%20%5Cto%20%5BB_1%2C%20R_1%2C%20R_2%5D)
So, the selection is:


<u>For urn 2</u>
There are 4 balls in urn 2

Each of the balls has 3 subsets. i.e.
![B_2 \to [B_3, R_4, R_5]; B_3 \to [B_2, R_4, R_5]; R_4 \to [B_2, B_3, R_5]; R_5 \to [B_2, B_3, R_4]](https://tex.z-dn.net/?f=B_2%20%5Cto%20%5BB_3%2C%20R_4%2C%20R_5%5D%3B%20B_3%20%5Cto%20%5BB_2%2C%20R_4%2C%20R_5%5D%3B%20R_4%20%5Cto%20%5BB_2%2C%20B_3%2C%20R_5%5D%3B%20R_5%20%5Cto%20%5BB_2%2C%20B_3%2C%20R_4%5D)
So, the selection is:


Total number of outcomes is:



Trapezoidal is involving averageing the heights
the 4 intervals are
[0,4] and [4,7.2] and [7.2,8.6] and [8.6,9]
the area of each trapezoid is (v(t1)+v(t2))/2 times width
for the first interval
the average between 0 and 0.4 is 0.2
the width is 4
4(0.2)=0.8
2nd
average between 0.4 and 1 is 0.7
width is 3.2
3.2 times 0.7=2.24
3rd
average betwen 1.0 and 1.5 is 1.25
width is 1.4
1.4 times 1.25=1.75
4th
average betwen 1.5 and 2 is 1.75
width is 0.4
0.4 times 1.74=0.7
add them all up
0.8+2.24+1.75+0.7=5.49
5.49
t=time
v(t)=speed
so the area under the curve is distance
covered 5.49 meters
Answer:
Step-by-step explanation: