Answer:
3
Step-by-step explanation:
First multiply 1 by 2 and that equals 2. Then do 2 times .5 or 2 times
. This is the same as finding the half of 2 that is 1. Therefore 1+2=3
can be factored into
. To double-check, you can multiply the terms together again using FOIL: first, outside, inside, last.
(3x)(x) + (3x)(8) + (-1)(x) + (-1)(8)
3x² + 24x - x - 8
3x² + 23x - 8
Check.
Answer:
2sin(2x)-2sinx+2sqrt3cosx-sqrt3 = 0
-----
4sin(x)cos(x) - 2sin(x) + 2sqrt(3)cos(x) - sqrt(3) = 0
-----
Factor:
2sin(x)[2cos(x)-1] + sqrt(3)[2cos(x)-1] = 0
-----
[2cos(x)-1][2sin(x)+sqrt(3)] = 0
Solve:
2cos(x)-1 = 0 or 2sin(x)+sqrt(3) = 0
cos(x) = 1/2 or sin(x) = -sqrt(3)/2
x = +/-pi/3 or x = -pi/3 or (4/3)pi
hope this helps!
Answer:
here you goes hope it helps you
Step-by-step explanation:
1
Common factor
−
3
2
+
7
+
2
0
-3y^{2}+7y+20
−3y2+7y+20
−
1
(
3
2
−
7
−
2
0
)
-1(3y^{2}-7y-20)
−1(3y2−7y−20)
2
Use the sum-product pattern
−
1
(
3
2
−
7
−
2
0
)
-1(3y^{2}{\color{#c92786}{-7y}}-20)
−1(3y2−7y−20)
−
1
(
3
2
+
5
−
1
2
−
2
0
)
-1(3y^{2}+{\color{#c92786}{5y}}{\color{#c92786}{-12y}}-20)
−1(3y2+5y−12y−20)
3
Common factor from the two pairs
−
1
(
3
2
+
5
−
1
2
−
2
0
)
-1(3y^{2}+5y-12y-20)
−1(3y2+5y−12y−20)
−
1
(
(
3
+
5
)
−
4
(
3
+
5
)
)
-1(y(3y+5)-4(3y+5))
−1(y(3y+5)−4(3y+5))
4
Rewrite in factored form
Solution
−
1
(
−
4
)
(
3
+
5
)