Hi!
This is a fun one, as it delves into basic trigonometry.
We're going to use the Pythagorean theorem here, which says that for right triangles where "c" is the hypotenuse,
a² + b² = c²
We have to split this large triangle into two parts, both of which are right triangles. (This is why they drew a line in the middle to tell you that the larger triangle is composed of two right triangles.)
Let's do the one on the right first.
We know that the length of the hypotenuse is 10, and that the length of one of the legs is 6.5. If we plug this into our equation, we'll get the length of the other leg. I'm choosing "b" to be 6.5, but it really doesn't matter if you pick "a" or "b", so long as you reserve "c" for the hypotenuse (longest side).
a² + 6.5² = 10²
a² + 42.25 = 100
a² = 57.75
√a² = √57.75
a ≈ 7.6
Therefore, the length of DC is about 7.6.
Find the length of AD using the same method (7.5 is the hypotenuse "c", and 6.5 is one of the legs "a" or "b"). Then, once you have AD, add the lengths of AD and DC to get AC.
Have a great one!
Answer:
i dont know much detail about this question but it could be 1. simplest answer
Step-by-step explanation:
Answer: the statements and resons, from the given bench, that fill in the blank are shown in italic and bold in this table:
Statement Reason
1. K is the midpoint of segment JL Given
2. segment JK ≅ segment KL <em>Definition of midpoint</em>
3. <em>L is the midpoint of segment KM</em> Given
4. <em>segment KL ≅ segment LM</em> Definition of midpoint
5. segment JK ≅ segment LM Transitive Property of
Congruence
Explanation:
1. First blank: you must indicate the reason of the statement "segment JK ≅ segment KL". Since you it is given that K is the midpoint of segment JL, the statement follows from the very <em>Definition of midpoint</em>.
2. Second blank: you must add a given statement. The other given statement is <em>segment KL ≅ segment LM</em> .
3. Third blank: you must indicate the statement that corresponds to the definition of midpoint. That is <em>segment KL ≅ segment LM</em> .
4. Fourth and fith blanks: you must indicate the statement and reason necessary to conclude with the proof. Since, you have already proved that segment JK ≅ segment KL and segment KL ≅ segment LM it is by the transitive property of congruence that segment JK ≅ segment LM.
Answer:
2 meters an haur
Step-by-step explanation:
12 haurs= 6 meters
1 haur =. x