<span>2 * 10^-4 - 1 * 10^-5
= 10^-4 ( 2 - 1 * 10^-1)
= 10^-4 ( 2 - 0.1)
= 10^-4 (1.9)
= 1.9 * 10^-4
hope it helps</span>
Answer:
It refers to a numerical or constant quantity placed before and multiplying the variable in an algebraic expression.
Answer:
Step-by-step explanation:
1)y=-6x-14 ---------(i)
-x-3y=-9 ---------- (ii)
Substitution method:
Substitute y value in equ (i)
-x -3*(-6x-14) = -9
-x - 3*-6x -3*(-14)= -9
-x + 18x + 42 = -9
17x = -9 -42
17x = -51
x = -51/17
x = -3
Substitute x value in equation (i)
y = -6*-3 -14
y =18-14
y = 4
Part A:
Given

defined by


but

Since, f(xy) ≠ f(x)f(y)
Therefore, the function is not a homomorphism.
Part B:
Given

defined by

Note that in

, -1 = 1 and f(0) = 0 and f(1) = -1 = 1, so we can also use the formular


and

Therefore, the function is a homomorphism.
Part C:
Given

, defined by


Since, f(x+y) ≠ f(x) + f(y), therefore, the function is not a homomorphism.
Part D:
Given

, defined by


but

Since, h(ab) ≠ h(a)h(b), therefore, the funtion is not a homomorphism.
Part E:
Given

, defined by
![\left([x_{12}]\right)=[x_4]](https://tex.z-dn.net/?f=%5Cleft%28%5Bx_%7B12%7D%5D%5Cright%29%3D%5Bx_4%5D)
, where
![[u_n]](https://tex.z-dn.net/?f=%5Bu_n%5D)
denotes the lass of the integer

in

.
Then, for any
![[a_{12}],[b_{12}]\in Z_{12}](https://tex.z-dn.net/?f=%5Ba_%7B12%7D%5D%2C%5Bb_%7B12%7D%5D%5Cin%20Z_%7B12%7D)
, we have
![f\left([a_{12}]+[b_{12}]\right)=f\left([a+b]_{12}\right) \\ \\ =[a+b]_4=[a]_4+[b]_4=f\left([a]_{12}\right)+f\left([b]_{12}\right)](https://tex.z-dn.net/?f=f%5Cleft%28%5Ba_%7B12%7D%5D%2B%5Bb_%7B12%7D%5D%5Cright%29%3Df%5Cleft%28%5Ba%2Bb%5D_%7B12%7D%5Cright%29%20%5C%5C%20%20%5C%5C%20%3D%5Ba%2Bb%5D_4%3D%5Ba%5D_4%2B%5Bb%5D_4%3Df%5Cleft%28%5Ba%5D_%7B12%7D%5Cright%29%2Bf%5Cleft%28%5Bb%5D_%7B12%7D%5Cright%29)
and
![f\left([a_{12}][b_{12}]\right)=f\left([ab]_{12}\right) \\ \\ =[ab]_4=[a]_4[b]_4=f\left([a]_{12}\right)f\left([b]_{12}\right)](https://tex.z-dn.net/?f=f%5Cleft%28%5Ba_%7B12%7D%5D%5Bb_%7B12%7D%5D%5Cright%29%3Df%5Cleft%28%5Bab%5D_%7B12%7D%5Cright%29%20%5C%5C%20%5C%5C%20%3D%5Bab%5D_4%3D%5Ba%5D_4%5Bb%5D_4%3Df%5Cleft%28%5Ba%5D_%7B12%7D%5Cright%29f%5Cleft%28%5Bb%5D_%7B12%7D%5Cright%29)
Therefore, the function is a homomorphism.
Answer:

Step-by-step explanation:
