Answer:
x° is 66°
Step-by-step explanation:
From the given diagram, we have;
∠JIH = 105° Given
∠IDJ = 39° Given
Therefore, we have;
∠JID and ∠JIH are supplementary angles, by the sum of angles on a straight line
∴ ∠JID + ∠JIH = 180° by definition of supplementary angles
∠JID + 105° = 180° by substitution property
∠JID = 180° - 105° = 75° by angle subtraction postulate
∠JID = 75°
∠IDJ + ∠JID + ∠IJD = 180° by the sum of interior angles of a triangle
∠IJD = 180° - (∠IDJ + ∠JID) = 180° - (39° + 75°) = 66° angle subtraction postulate
∠IJD = 66°
∠x° ≅ ∠IJD, by vertically opposite angles
∴ ∠x° = ∠IJD = 66° by the definition of congruency
∠x° = 66°
Idk 1017.876? But I’m not entirely sure
You add the like terms. In this case, the like terms are -6w,+7w & 5,-4.
-6w + 7w = 1w.
5 - 4 = -1.
The coefficients (terms with variables - letters) comes firm, then the terms (numbers)
.
so the final answer is: 1w -1 :)