Answer:TRUE
Explanation: Is the distribution policy that maximizes the value of the firm by choosing the optimal level and distributions system for its dividends and stock repurchases). Most firm try to achieve the optimal distribution policy necessary for it to maximize its stock price for guarantee good returns or good profit on its investment.
Answer:
(a) Linear model
![max\ P = 9x + 7y](https://tex.z-dn.net/?f=max%5C%20P%20%3D%209x%20%2B%207y)
Subject to:
![12x + 4y \le 60](https://tex.z-dn.net/?f=12x%20%2B%204y%20%5Cle%2060)
![4x + 8y \le 40](https://tex.z-dn.net/?f=4x%20%2B%208y%20%5Cle%2040)
![x,y \ge 0](https://tex.z-dn.net/?f=x%2Cy%20%5Cge%200)
(b) Standard form:
![max\ P = 9x + 7y](https://tex.z-dn.net/?f=max%5C%20P%20%3D%209x%20%2B%207y)
Subject to:
![12x + 4y + s_1 = 60](https://tex.z-dn.net/?f=12x%20%2B%204y%20%2B%20s_1%20%3D%2060)
![4x + 8y +s_2= 40](https://tex.z-dn.net/?f=4x%20%2B%208y%20%2Bs_2%3D%2040)
![x,y \ge 0](https://tex.z-dn.net/?f=x%2Cy%20%5Cge%200)
![s_1,s_2 \ge 0](https://tex.z-dn.net/?f=s_1%2Cs_2%20%5Cge%200)
Explanation:
Given
![\begin{array}{ccc}{} & {Hours/} & {Unit} & {Product} & {Line\ 1} & {Line\ 2} & {A} & {12} & {4} & {B} & {4} & {8} & {Total\ Hours} & {60} &{40}\ \end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Bccc%7D%7B%7D%20%26%20%7BHours%2F%7D%20%26%20%7BUnit%7D%20%26%20%7BProduct%7D%20%26%20%7BLine%5C%201%7D%20%26%20%7BLine%5C%202%7D%20%26%20%7BA%7D%20%26%20%7B12%7D%20%26%20%7B4%7D%20%26%20%7BB%7D%20%26%20%7B4%7D%20%26%20%7B8%7D%20%26%20%7BTotal%5C%20Hours%7D%20%26%20%7B60%7D%20%26%7B40%7D%5C%20%5Cend%7Barray%7D)
Solving (a): Formulate a linear programming model
From the question, we understand that:
A has a profit of $9 while B has $7
So, the linear model is:
![max\ P = 9x + 7y](https://tex.z-dn.net/?f=max%5C%20P%20%3D%209x%20%2B%207y)
Subject to:
![12x + 4y \le 60](https://tex.z-dn.net/?f=12x%20%2B%204y%20%5Cle%2060)
![4x + 8y \le 40](https://tex.z-dn.net/?f=4x%20%2B%208y%20%5Cle%2040)
![x,y \ge 0](https://tex.z-dn.net/?f=x%2Cy%20%5Cge%200)
Where:
![x \to line\ 1](https://tex.z-dn.net/?f=x%20%5Cto%20line%5C%201)
![y \to line\ 2](https://tex.z-dn.net/?f=y%20%5Cto%20line%5C%202)
Solving (b): The model in standard form:
To do this, we introduce surplus and slack variable "s"
For
inequalities, we add surplus (add s)
Otherwise, we remove slack (minus s)
So, the standard form is:
So, the linear model is:
![max\ P = 9x + 7y](https://tex.z-dn.net/?f=max%5C%20P%20%3D%209x%20%2B%207y)
Subject to:
![12x + 4y + s_1 = 60](https://tex.z-dn.net/?f=12x%20%2B%204y%20%2B%20s_1%20%3D%2060)
![4x + 8y +s_2= 40](https://tex.z-dn.net/?f=4x%20%2B%208y%20%2Bs_2%3D%2040)
![x,y \ge 0](https://tex.z-dn.net/?f=x%2Cy%20%5Cge%200)
![s_1,s_2 \ge 0](https://tex.z-dn.net/?f=s_1%2Cs_2%20%5Cge%200)
Answer and Explanation:
The journal entries are shown below
On Dec. 31, 2018
Interest receivable $600
To Interest income $600
(Being accrued interest earned is recorded)
On Dec. 31, 2018
Interest income $2,400
To Retained earnings $2,400
(Being the closing of interest income is recorded)
On Jan. 31, 2019
Cash $900
To Interest receivable $600
To Interest income $300
(Being cash receipt of interest is recorded)