<span>a. chromosomes hope that helped I'm doing the same quiz.</span>
Answer:
CCAGGCC
CCATCGA
GGCCATC
CAT
AGGCCAT
CATCGAG
Explanation:
Shotgun sequencing is a method used to determine the nucleotide sequence of entire chromosomes/genomes. This sequencing method consists of obtaining random DNA fragments which are subsequently classified by bioinformatic tools that ordering them according to overlapping sequences called contigs. In the whole-genome shotgun (WGS) technique, the entire genome of an organism is sequenced, being the critical factor the depth of sequencing, which refers to the quality of the sequencing reads (e.g., a depth of 20X indicates that the genome is sequenced 20 times by a sequencing machine). For the human genome, WGS became available after the completion of the Human Genome Project (HGP), which enabled the generation of a reference sequence for the whole human genome. The steps of the WGS technique are the following:
1. Preparation of isolated chromosomes
2. The DNA is sheared into small fragments
3. The DNA fragments of about 1 kilobase (1000 base pairs) are incorporated into plasmids which are cloned to render pure samples of each DNA fragment
4. The plasmid clones are sequenced by sequencing machines
5. Bioinformatic tools finally are used to link DNA fragments by their overlapping ends
Answer:
producers (plants)
Explanation:
plants are the most common
Answer:
Yes
Explanation:
Range rule of thumb predicts the Range to be a multiple of 4 of the standard deviation or to be four times the standard deviation. Making the usual values equal to 2 standard deviations distanct of the mean of the data distribution.
In a given distribution with mean and standard deviation that is obtained, the usual values in mean (as seen in the attached image).
2*standard deviation and mean + 2*standard deviation.
If the data point is not up to the mean
- 2* standard deviation is taken to be significantly low.
If the data point is more than the mean
+ 2*standard deviation is taken to be significantly high.
Let's take the xbar to be the mean and s as standard deviaiton
Given,
mean, xbar = 1116.2
standard deviation, s =127.7
The range rule of thumb shows that the usual values are within 2 standard deviations from the mean
Lower boundary
= xbar - 2s
= 1116.2 - 2(127.7)
= 860.8
Upper boundary
= xbar + 2s
= 1116.2 + 2(127.7)
= 1371.6
We should note that 1411.6 is not between 860.8 and 1371.6, which connotes that 1411.6cm^3 is unusually high.