Answer:
Perimeter 
Step-by-step explanation:
Let
= width of the rectangle.
From the information "length of a rectangle is 5cm more than width", we can write:
Length = 
- - - -
Perimeter
(formula for the perimeter of a rectangle)



∴ The expression of the perimeter of the rectangle in terms of
is
.
Hope this helps :)
Using an exponential function, it is found that the mass of the radioactive sample at the beginning of the 13th day of the experiment was of 169.1 mg.
<h3>What is an exponential function?</h3>
A decaying exponential function is modeled by:

In which:
- A(0) is the initial value.
- r is the decay rate, as a decimal.
At the beginning of the first day of the experiment the mass of the substance was 500 grams and mass was decreasing by 8% per day, hence A(0) = 500, r = 0.08, and the equation is given by:



At the 13th day, the mass is given by:

More can be learned about exponential functions at brainly.com/question/25537936
Answer:
7
Step-by-step explanation:
Please find the solution in the image attached below.
Hope this helps!
By understanding and applying the characteristics of <em>piecewise</em> functions, the results are listed below:
- r (- 3) = 15
- r (- 1) = 11
- r (1) = - 7
- r (5) = 13
<h3>How to evaluate a piecewise function at given values</h3>
In this question we have a <em>piecewise</em> function formed by three expressions associated with three respective intervals. We need to evaluate the expression at a value of the <em>respective</em> interval:
<h3>r(- 3): </h3>
-3 ∈ (- ∞, -1]
r(- 3) = - 2 · (- 3) + 9
r (- 3) = 15
<h3>r(- 1):</h3>
-1 ∈ (- ∞, -1]
r(- 1) = - 2 · (- 1) + 9
r (- 1) = 11
<h3>r(1):</h3>
1 ∈ (-1, 5)
r(1) = 2 · 1² - 4 · 1 - 5
r (1) = - 7
<h3>r(5):</h3>
5 ∈ [5, + ∞)
r(5) = 4 · 5 - 7
r (5) = 13
By understanding and applying the characteristics of <em>piecewise</em> functions, the results are listed below:
- r (- 3) = 15
- r (- 1) = 11
- r (1) = - 7
- r (5) = 13
To learn more on piecewise functions: brainly.com/question/12561612
#SPJ1
Answer:
3
Step-by-step explanation:
Solving the inequality gives ...
x/9 < 2/5
x < 18/5 . . . . multiply by 9
Applying the problem restrictions, we have ...
0 < x < 3.6 . . . . . x is an integer
Solutions are {1, 2, 3}. There are 3 distinct possible values for x.