Answer:
(B)
General Formulas and Concepts:
<u>Calculus</u>
Limits
Derivatives
- The definition of a derivative is the slope of the tangent line.
Derivative Notation
Instantaneous Rates
- Tangent Line:
Step-by-step explanation:
Since we are trying to find a <em>rate</em> at which W(t) changes, we must find the <em>derivative</em> at <em>t</em> = 3.
We are given 2 close answer choices that would have the same <em>numerical</em> answer but different <em>meanings</em>:
- (A)
- (B)
If we look at answer choice (A), we see that our units would simply just be volume. It would not have the units of a rate of change. Yes, it may be the closest numerically correct answer, but it does not tell us the <em>rate</em> at which the volume would be changing and it is not a derivative.
If we look at answer choice (B), we see that our units would be cm³/s, and that is most certainly a rate of change. Answer choice (B) is also a <em>derivative</em> at <em>t</em> = 3, and a derivative tells us what <em>rate</em> something is changing.
∴ Answer choice (B) will give us the best estimate for the value of the instantaneous rate of change of W(t) when <em>t</em> = 3.
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
Book: College Calculus 10e
Answer:
8
Step-by-step explanation:
Recall these two equations for circumference and diameter.
Circumference = 2*pi*radius
Diameter = radius*2
25.12 = 2*pi*radius
Radius = 4
Diameter = 4*2 => 8
Thus the diameter is 8
Answer:
Step-by-step explanation:
2 = m / 2 - 7
2 + 7 = m / 2
9 = m / 2
cross multiply
m = 9 * 2
Therefore m = 18
Hope u understood and it helped.
Answer:
A prime number is a number that can only be divided by 1 and itself.
Answer. First option: t > 6.25
Solution:
Height (in feet): h=-16t^2+729
For which interval of time is h less than 104 feet above the ground?
h < 104
Replacing h for -16t^2+729
-16t^2+729 < 104
Solving for h: Subtracting 729 both sides of the inequality:
-16t^2+729-729 < 104-729
-16t^2 < -625
Multiplying the inequality by -1:
(-1)(-16t^2 < -625)
16t^2 > 625
Dividing both sides of the inequality by 16:
16t^2/16 > 625/16
t^2 > 39.0625
Replacing t^2 by [ Absolute value (t) ]^2:
[ Absolute value (t) ]^2 > 39.0625
Square root both sides of the inequality:
sqrt { [ Absolute value (t) ]^2 } > sqrt (39.0625)
Absolute value (t) > 6.25
t < -6.25 or t > 6.25, but t can not be negative, then the solution is:
t > 6.25