Answer:
2 is your answer.
Step-by-step explanation:
Simplify. Remember to follow PEMDAS. First solve the parenthesis, then multiply, and finally divide.
-8(17 - 12) = -8(5) = -40
-2(8 - (-2)) = -2(8 + 2) = -2(10) = -20
-40/-20 = 2
2 is your answer.
~
Answer:they would meet after 4.5 hours
Step-by-step explanation:
At the point where they will both meet, they would have covered a total distance of 540 miles.
Let t represent the time it will take the car and the truck to meet.
Distance = speed × time
The car drives at a speed of 65 miles per hour. Distance covered by the car in t hours would be
65 × t = 65t
The truck travels at a speed of 55 miles per hour.
Distance covered by the truck in t hours would be
55 × t = 55t
Therefore,. 65t + 55t = 540
120t = 540
t = 540/120 = 4.5 hours
Hello im Esmerallda
How are u
24 glasses would be needed to fill up a 3 liter jub
It will take exactly 4 years for these trees to be the same height
Step-by-step explanation:
A gardener is planting two types of trees:
- Type A is 3 feet tall and grows at a rate of 7 inches per year
- Type B is 5 feet tall and grows at a rate of 1 inches per year
We need to find in how many years it will take for these trees to be the
same height
Assume that it will take x years for these trees to be the same height
The height of a tree = initial height + rate of grow × number of years
Type A:
∵ The initial height = 3 feet
∵ 1 foot = 12 inches
∴ The initial height = 3 × 12 = 36 inches
∵ The rate of grows = 7 inches per year
∵ The number of year = x
∴ = 36 + (7) x
∴ = 36 + 7 x
Type B:
∵ The initial height = 5 feet
∴ The initial height = 5 × 12 = 60 inches
∵ The rate of grows = 1 inches per year
∵ The number of year = x
∴ = 60 + (1) x
∴ = 60 + x
Equate and
∴ 36 + 7 x = 60 + x
- Subtract x from both sides
∴ 36 + 6 x = 60
- Subtract 36 from both sides
∴ 6 x = 24
- Divide both sides by 6
∴ x = 4
∴ The two trees will be in the same height in 4 years
It will take exactly 4 years for these trees to be the same height
Learn more:
You can learn more about the rate in brainly.com/question/10712420
#LearnwithBrainly