Answer:
28
Step-by-step explanation:
From the given information:
Let x be the number of trees.
F(x) = (50 +x) (20 - 3x)
F(x) = 1000 - 150x + 20x - 3x²)
F(x) = -3x² - 130x + 1000
Differentiating F(x) with respect to x;


F'(x) = -6x -130
Now; we set F'(x) to be equal to zero to determine the critical value;
-6x - 130 = 0
x = - 130/6
Differentiating F''(x) with respect to x


F''(x) = -6 (<0)
Thus; by the second derivative, the revenue function F(x) is maximum when x = -130/6
Therefore, the number of trees she should plant per acre to maximize her harvest is:
50 + x = 50 - 130/6
= 85/3
28
Therefore, the number of trees per acre to maximize the harvest is 28
Answer:
Step-by-step explanation:
Figure it out yourself
Answer:
<h2> </h2><h2>

</h2>
Step-by-step explanation:
<h3>
<u>Question</u><u>:</u><u>-</u></h3>
<h3>
<u>Equation</u><u>:</u><u>-</u></h3>
<h3>
<u>Solution</u><u>:</u><u>-</u></h3>
=> 3x + 4y + 6z = 15
- <em>[</em><em>On</em><em> </em><em>subtracting</em><em> </em><em>both</em><em> </em><em>sides</em><em> </em><em>with</em><em> </em><em>4y</em><em>]</em>
=> 3x + 4y + 6z - 4y = 15 - 4y
- <em>[</em><em>On</em><em> </em><em>Simplification</em><em>]</em>
=> 3x + 6z = 15 - 4y
- <em>[</em><em>On</em><em> </em><em>subtracting</em><em> </em><em>both</em><em> </em><em>sides</em><em> </em><em>with</em><em> </em><em>6z</em><em>]</em>
=> 3x + 6z - 6z = 15 - 4y - 6z
- <em>[</em><em>On</em><em> </em><em>Simplification</em><em>]</em>
=> 3x = 15 - 4y - 6z
- <em>[</em><em>On</em><em> </em><em>dividing</em><em> </em><em>both</em><em> </em><em>sides</em><em> </em><em>with</em><em> </em><em>3</em><em>]</em>

- <em>[</em><em>On</em><em> </em><em>Simplification</em><em>]</em>

Answer:
The value of the determinant is 0.
Step-by-step explanation:
Since it is a 3 x 3 determinant, we can calculate its value by the Law of Sarrus:



The value of the determinant is 0.