Answer:
1.23 meters
Step-by-step explanation:
-3n=26
n=26/3
It is the fraction form.
Answer:
It is not normally distributed as it has it main concentration in only one side.
Step-by-step explanation:
So, we are given that the class width is equal to 0.2. Thus we will have that the first class is 0.00 - 0.20, second class is 0.20 - 0.40 and so on(that is 0.2 difference).
So, let us begin the groupings into their different classes, shall we?
Data given:
0.31 0.31 0 0 0 0.19 0.19 0 0.150.15 0 0.01 0.01 0.19 0.19 0.53 0.53 0 0.
(1). 0.00 - 0.20: there are 15 values that falls into this category. That is 0 0 0 0.19 0.19 0 0.15 0.15 0 0.01 0.01 0.19 0.19 0 0.
(2). 0.20 - 0.40: there are 2 values that falls into this category. That is 0.31 0.31
(3). 0.4 - 0.6 : there are 2 values that falls into this category.
(4). 0.6 - 0.8: there 0 values that falls into this category. That is 0.53 0.53.
Class interval frequency.
0.00 - 0.20. 15.
0.20 - 0.40. 2.
0.4 - 0.6. 2.
The expression that would be added to both sides is (b/2a)^2
<h3>How to determine the expression?</h3>
The equation is given as:
x^2 + b/ax + __ = c/a + __
Take the coefficient of x
b/a
Divide by 2
b/2a
Square the expression
(b/2a)^2
Hence, the expression that would be added to both sides is (b/2a)^2
Read more about quadratic equation at:
brainly.com/question/10449635
#SPJ1
They did not include the constraint for y ≤x+3 on the graph.
See attached picture with added constraint.
Using the 4 points that are given as the solution on the graph, replace t he x and Y in the original equation to solve and see which is the greater value.
Point (0,3) P = -0 +3(3) = 0+9 = 9
Point (1,4) P = -1 + 3(4) = -1 +12 = 11
Point (0,0) P = -0 + 3(0) = 0 + 0 = 0
Point (3,0) P = -3 + 3(0) = -3 + 0 = -3
The correct solution to maximize P is (1,4)