Queremos ver que fracción de la finca se ha destinado a plazas de aparcamiento.
La solución es:
La fracción de la finca que se destina a plaas de aparcamiento es 3/56
Sabemos que originalmente se iba a destinar 3/14 del total de la finca a plazas de aparcamiento, pero finalmente se destino 3/4 de lo previsto a zonas ajardinadas.
Es decir, <u>se destino 3/4 de los 3/14 del total de la finca</u> a zonas ajardinadas, entonces <u>el 1/4 restante se dedico a plazas de aparcamiento</u>, esto da:
(1/4)*3/14 = 3/56
La fracción de la finca que se destina a plaas de aparcamiento es 3/56
Sí quieres aprender más, puedes leer:
brainly.com/question/16649102
<span>The answer to this problem is B. t – 51 = 127 t = 178 $178.</span>
Step-by-step explanation:
please mark me as brainlest
Neither.
This is because one equation is without variables and the other is with variables.
You can cancel out nothing
Answer:
101.4 liters.
Step-by-step explanation:
First of all we will find mileage of car.
![\text{Mileage of car}=\frac{\text{Total distance traveled}}{\text{Total amount of fuel}}](https://tex.z-dn.net/?f=%5Ctext%7BMileage%20of%20car%7D%3D%5Cfrac%7B%5Ctext%7BTotal%20distance%20traveled%7D%7D%7B%5Ctext%7BTotal%20amount%20of%20fuel%7D%7D)
![\text{Mileage of car}=\frac{370.3\text{ miles}}{52\text{ liters gas}}](https://tex.z-dn.net/?f=%5Ctext%7BMileage%20of%20car%7D%3D%5Cfrac%7B370.3%5Ctext%7B%20miles%7D%7D%7B52%5Ctext%7B%20liters%20gas%7D%7D)
![\text{Mileage of car}=7.12115\frac{\text{ miles}}{\text{ liters gas}}](https://tex.z-dn.net/?f=%5Ctext%7BMileage%20of%20car%7D%3D7.12115%5Cfrac%7B%5Ctext%7B%20miles%7D%7D%7B%5Ctext%7B%20liters%20gas%7D%7D)
We can see that car travels at the rate of 7.12 miles per liter gas. Now let us find amount of gas needed to travel 722 miles at the same rate.
![\text{Amount of gas needed}=\frac{722}{7.12}](https://tex.z-dn.net/?f=%5Ctext%7BAmount%20of%20gas%20needed%7D%3D%5Cfrac%7B722%7D%7B7.12%7D)
![\text{Amount of gas needed}=101.388](https://tex.z-dn.net/?f=%5Ctext%7BAmount%20of%20gas%20needed%7D%3D101.388)
Therefore, it will take 101.4 liters of gas to travel 722 miles.