1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mrac [35]
3 years ago
15

Alex and Tim are going to race. Tim gives Alex a 50 meter head start. Alex

Mathematics
2 answers:
Vaselesa [24]3 years ago
5 0

Answer:

After 3 min

Step-by-step explanation:

So becuase Tim is walking and Tim gave Alex a 50 meter head start so after 3 min they will tie each other.

Andrei [34K]3 years ago
4 0
Tim’s total distance must be 4x, and Alex’ must be 2x + 50

2x + 50 = 4x

50 = 2x

x = 25

25 seconds!

Could you mark me as the brainliest, please? ;)
You might be interested in
Can someone please help?!
attashe74 [19]

                   .                                                                    

....................

. .                                                              

                                              .       .

4 0
3 years ago
La sucesión {1/ n } es convergente <br><br> alguien me ayuda por favor
loris [4]

Answer:

si es convergente

más inteligente por favor

Step-by-step explanation:

7 0
2 years ago
Given g(x)= 10x + 2, find g(2)
nataly862011 [7]

Answer:

22

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
What is 9 3/10 - 1 7/10
Step2247 [10]
9 3/10- 1 7/10 is 7.6 or 7 3/5
6 0
2 years ago
Pumping stations deliver oil at the rate modeled by the function D, given by d of t equals the quotient of 5 times t and the qua
goblinko [34]
<h2>Hello!</h2>

The answer is:  There is a total of 5.797 gallons pumped during the given period.

<h2>Why?</h2>

To solve this equation, we need to integrate the function at the given period (from t=0 to t=4)

The given function is:

D(t)=\frac{5t}{1+3t}

So, the integral will be:

\int\limits^4_0 {\frac{5t}{1+3t}} \ dx

So, integrating we have:

\int\limits^4_0 {\frac{5t}{1+3t}} \ dt=5\int\limits^4_0 {\frac{t}{1+3t}} \ dx

Performing a change of variable, we have:

1+t=u\\du=1+3t=3dt\\x=\frac{u-1}{3}

Then, substituting, we have:

\frac{5}{3}*\frac{1}{3}\int\limits^4_0 {\frac{u-1}{u}} \ du=\frac{5}{9} \int\limits^4_0 {\frac{u-1}{u}} \ du\\\\\frac{5}{9} \int\limits^4_0 {\frac{u-1}{u}} \ du=\frac{5}{9} \int\limits^4_0 {\frac{u}{u} -\frac{1}{u } \ du

\frac{5}{9} \int\limits^4_0 {(\frac{u}{u} -\frac{1}{u } )\ du=\frac{5}{9} \int\limits^4_0 {(1 -\frac{1}{u } )

\frac{5}{9} \int\limits^4_0 {(1 -\frac{1}{u })\ du=\frac{5}{9} \int\limits^4_0 {(1 )\ du- \frac{5}{9} \int\limits^4_0 {(\frac{1}{u })\ du

\frac{5}{9} \int\limits^4_0 {(1 )\ du- \frac{5}{9} \int\limits^4_0 {(\frac{1}{u })\ du=\frac{5}{9} (u-lnu)/[0,4]

Reverting the change of variable, we have:

\frac{5}{9} (u-lnu)/[0,4]=\frac{5}{9}((1+3t)-ln(1+3t))/[0,4]

Then, evaluating we have:

\frac{5}{9}((1+3t)-ln(1+3t))[0,4]=(\frac{5}{9}((1+3(4)-ln(1+3(4)))-(\frac{5}{9}((1+3(0)-ln(1+3(0)))=\frac{5}{9}(10.435)-\frac{5}{9}(1)=5.797

So, there is a total of 5.797 gallons pumped during the given period.

Have a nice day!

4 0
3 years ago
Other questions:
  • Please help ASAP! I will mark Brainliest! Please answer CORRECTLY! No guessing!
    7·2 answers
  • ^!!Howdy howdy!!^
    7·1 answer
  • Which of the following is the correct classification of ∆mnp if m&lt;m=35° and m&lt;p=47°?​
    9·2 answers
  • What is the LCM of 30 and 45? a0
    6·2 answers
  • When you have a math problem of 7÷4 how do you turn the answer into a fraction
    5·2 answers
  • Your Assignment What is the fractional equivalent of the repeating decimal n = 0.1515... ? Answer the questions to find out.
    11·1 answer
  • 17-2/3-7(8-6)<br> How do I get the answer
    13·1 answer
  • A bicycle has a cash price of $319.95. It can be bought on hire purchase with a deposit of $69 and ten monthly installments of $
    5·1 answer
  • Qt + a = -1 <br><br> when q = 3 and t = 4
    10·1 answer
  • Sum of 4x^3+6x^2+2x^2-3 and 3x^3+3x^2-5x-5 is
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!