Answer:D
Step-by-step explanation:
F(x)=(-2/((x+y-2)^(1/2))-(x+y+2)^(1/2)
the only irrational part of this expression is the (x+y-2)^(1/2) in the denominator, so, to rationalize this, you multiply the numerator and denominator by the denominator, as well as the other parts of the expression
also, you must multiply the -sqrt(x+y+2) by sqrt(x+y-2)/sqrt(x+y-2) to form a common denominator
(-2)/(x+y-2)^(1/2)-(x+y+2)^(1/2)(x+y-2)^(1/2)/(x+y-2)^(1/2)
(common denominator)
(-2-(x^2+xy+2x+xy+y^2+2y-2x-2y-4))/(x+y-2)^(1/2)
(FOIL)
(-2-x^2-y^2-2xy+4)/(x+y-2)^(1/2)
(Distribute negative)
(-x^2-y^2-2xy+2)/(x+y-2)^(1/2)
(Simplify numerator)
(-x^2-y^2-2xy+2)(x+y-2)^(1/2)/(x+y-2)^(1/2)(x+y-2)^(1/2)
(Rationalize denominator by multiplying both top and bottom by sqrt)
(-x^2-y^2-2xy+2)((x+y-2)^(1/2))/(x+y-2)
(The function is now rational)
=(-x^2-y^2-2xy+2)(sqrt(x+y-2))/(x+y-2)
Answer:
a.) Between 0.5 and 3 seconds.
Step-by-step explanation:
So I just went ahead and graphed this quadratic on Desmos so you could have an idea of what this looks like. A negative quadratic, and we're trying to find when the graph's y-values are greater than 26.
If you look at the graph, you can easily see that the quadratic crosses y = 26 at x-values 0.5 and 3. And, you can see that the quadratic's graph is actually above y = 26 between these two values, 0.5 and 3.
Because we know that the quadratic's graph models the projectile's motion, we can conclude that the projectile will also be above 26 feet between 0.5 and 3 seconds.
So, the answer is a.) between 0.5 and 3 seconds.

in exponent form and in word form it is 10 to the 5th power
Answer:
x = 78º
y = 35º
Step-by-step explanation:
These are isosceles triangles
two angles are congruent
-----------------------------
x + 51 + 51 = 180
x = 180 - 102
x = 78º
y + y + 110 = 180
2y = 70
y = 35º