Answer:
0.03259..
Step-by-step explanation:
The expression of integral as a limit of Riemann sums of given integral
is 4
∑
from i=1 to i=n.
Given an integral
.
We are required to express the integral as a limit of Riemann sums.
An integral basically assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinite data.
A Riemann sum is basically a certain kind of approximation of an integral by a finite sum.
Using Riemann sums, we have :
=
∑f(a+iΔx)Δx ,here Δx=(b-a)/n
=f(x)=
⇒Δx=(5-1)/n=4/n
f(a+iΔx)=f(1+4i/n)
f(1+4i/n)=![[n^{2}(n+4i)]/2n^{3}+(n+4i)^{3}](https://tex.z-dn.net/?f=%5Bn%5E%7B2%7D%28n%2B4i%29%5D%2F2n%5E%7B3%7D%2B%28n%2B4i%29%5E%7B3%7D)
∑f(a+iΔx)Δx=
∑
=4
∑
Hence the expression of integral as a limit of Riemann sums of given integral
is 4
∑
from i=1 to i=n.
Learn more about integral at brainly.com/question/27419605
#SPJ4
When
, we have


and of course 3 | 6. ("3 divides 6", in case the notation is unfamiliar.)
Suppose this is true for
, that

Now for
, we have

so we know the left side is at least divisible by
by our assumption.
It remains to show that

which is easily done with Fermat's little theorem. It says

where
is prime and
is any integer. Then for any positive integer
,

Furthermore,

which goes all the way down to

So, we find that

QED
Answer:
It mean that the observed progeny is similar than the expected progeny. There is no a relationship between the categorical variables.
Step-by-step explanation:
The Chi-squared test is used to test the relationship between categorical variables. A categorical variable is a non-numerical variable. The null hypothesis of the Chi-squared test is that categorical variables are independent; it means that the frequencies are not dependent on the variable. It is important to know that the Chi-squared test does not measure causality, it only measures the relationship. To reject the null hypothesis, you usually need a probability lower than 0.05, but in this case, the probability was way higher than 0.05, it was between 0.5 and 0.9.
Answer:
3.24!
Step-by-step explanation: