Answer:
D.
Step-by-step explanation:
im sure is d please mark brainliest
Answer:
To prove that ( sin θ cos θ = cot θ ) is not a trigonometric identity.
Begin with the right hand side:
R.H.S = cot θ =
L.H.S = sin θ cos θ
so, sin θ cos θ ≠ 
So, the equation is not a trigonometric identity.
=========================================================
<u>Anther solution:</u>
To prove that ( sin θ cos θ = cot θ ) is not a trigonometric identity.
Assume θ with a value and substitute with it.
Let θ = 45°
So, L.H.S = sin θ cos θ = sin 45° cos 45° = (1/√2) * (1/√2) = 1/2
R.H.S = cot θ = cot 45 = 1
So, L.H.S ≠ R.H.S
So, sin θ cos θ = cot θ is not a trigonometric identity.
13/5 or 2 3/5 by the way nice profile picture
Answer: y = 2x - 20
1. y + 18 = 2(x - 1)
2. y + 18 = 2x - 2
3. y + 20 = 2x
4. y = 2x - 20