Answer:
First ones 90 and the second one is 48
Step-by-step explanation:
please brainliest me
Shifting a circle results to changes in the coordinates of the circle. For instance, if the coordinates of the center of the circle is taken to be (0,0), the new coordinates will be [(0+5),(0+2)] after shifting. The equation of the circle will also change with the same margin.
That is, the new equation will be;
(5+x)^2+(2+y)^2 =19
Notice, only the coordinates changes.
Any second part or anything else to look at?
to find the x-intercept of a function, we simply set y = 0 and then solve for "x", so, let's first find the equation of it and then set y = 0.
![\bf (\stackrel{x_1}{-12}~,~\stackrel{y_1}{16})~\hspace{10em} slope = m\implies-\cfrac{2}{3} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-16=-\cfrac{2}{3}[x-(-12)] \\\\\\ y-16=-\cfrac{2}{3}(x+12)\implies \stackrel{\stackrel{y}{\downarrow }}{0}-16=-\cfrac{2}{3}x-8\implies -8=-\cfrac{2x}{3} \\\\\\ -24=-2x\implies \cfrac{-24}{-2}=x\implies 12=x \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill (12,0) ~\hfill](https://tex.z-dn.net/?f=%5Cbf%20%28%5Cstackrel%7Bx_1%7D%7B-12%7D~%2C~%5Cstackrel%7By_1%7D%7B16%7D%29~%5Chspace%7B10em%7D%20slope%20%3D%20m%5Cimplies-%5Ccfrac%7B2%7D%7B3%7D%20%5C%5C%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20%5Ctextit%7Bpoint-slope%20form%7D%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y-y_1%3Dm%28x-x_1%29%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%5Cimplies%20y-16%3D-%5Ccfrac%7B2%7D%7B3%7D%5Bx-%28-12%29%5D%20%5C%5C%5C%5C%5C%5C%20y-16%3D-%5Ccfrac%7B2%7D%7B3%7D%28x%2B12%29%5Cimplies%20%5Cstackrel%7B%5Cstackrel%7By%7D%7B%5Cdownarrow%20%7D%7D%7B0%7D-16%3D-%5Ccfrac%7B2%7D%7B3%7Dx-8%5Cimplies%20-8%3D-%5Ccfrac%7B2x%7D%7B3%7D%20%5C%5C%5C%5C%5C%5C%20-24%3D-2x%5Cimplies%20%5Ccfrac%7B-24%7D%7B-2%7D%3Dx%5Cimplies%2012%3Dx%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20%2812%2C0%29%20~%5Chfill)
Answer:
y=-9x-4
Step-by-step explanation:
Perpendicular lines meet the following condition:
m2*m1= -1 (a)
where m is the slope of a line
m1 is given through equation of line 1, y =1/9 x+2
m2 must be -9 -> from eq. (a)
The Line has the following equation: y=mx+b, where m=-9 and the b is the interception with y axis.
Evaluating the above equation in (-1,5) we have the following equation
5= -9*(-1)+b, we have b=-4
The line has the following equation
y=-9x-4
Slope intercept form