1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
yulyashka [42]
3 years ago
15

A 1.0 x 10^2-kilogram box rests on the bed of a

Advanced Placement (AP)
1 answer:
Stels [109]3 years ago
5 0

Answer:

2\times 10^2\ \text{N}

Explanation:

\mu = Coefficient of friction

g = Acceleration due to gravity

m = Mass of box = 1\times 10^2\ \text{kg}

a = Acceleration of the block = 2\ \text{m/s}^2

Acceleration is given by

a=\mu g\\\Rightarrow \mu=\dfrac{a}{g}

Friction force is given by

f=\mu mg\\\Rightarrow f=\dfrac{a}{g}mg\\\Rightarrow f=ma\\\Rightarrow f=1\times 10^2\times 2\\\Rightarrow f=2\times 10^2\ \text{N}

The magnitude of the force of friction on the box as it moves with the truck without slipping is 2\times 10^2\ \text{N}.

You might be interested in
1) Calcula la diagonales de un poligono n lados. Heptágono: 2 puntos
ahrayia [7]

Answer:

El número de diagonales de un polígono de n lados se calcula mediante la siguiente fórmula:

d = \frac{n\cdot (n-3)}{2} (1)

Donde:

d - Cantidad de diagonales del polígono.

n - Cantidad de lados del polígono.

Bajo esta fórmula, tenemos los siguientes resultados:

a) El heptágono tiene 14 diagonales.

b) El octágono tiene 20 diagonales.

c) El eneágono tiene 27 diagonales.

d) El decágono tiene 35 diagonales.

e) El pentadecágono tiene 90 diagonales.

Explanation:

La cantidad de diagonales de un polígono se puede determinar mediante la siguiente ecuación:

d = \frac{n\cdot (n-3)}{2} (1)

Donde:

d - Cantidad de diagonales del polígono.

n - Cantidad de lados del polígono.

A continuación, calculamos la cantidad de diagonales de los siguientes polígonos:

Heptágono (n = 7)

d = \frac{7\cdot (7-3)}{2}

d = 14

El heptágono tiene 14 diagonales.

Octágono (n = 8)

d = \frac{8\cdot (8-3)}{2}

d = 20

El octágono tiene 20 diagonales.

Eneágono (n = 9)

d = \frac{9\cdot (9-3)}{2}

d = 27

El eneágono tiene 27 diagonales.

Decágono (n = 10)

d = \frac{10\cdot (10-3)}{2}

d = 35

El decágono tiene 35 diagonales.

Pentadecágono (n = 15)

d = \frac{15\cdot (15-3)}{2}

d = 90

El pentadecágono tiene 90 diagonales.

8 0
2 years ago
Which of the following best summarizes the geography of Greece?
hichkok12 [17]
Im pretty positive its c
7 0
2 years ago
Read 2 more answers
When you are driving at night
MakcuM [25]

Answer:

c

Explanation: i know

4 0
3 years ago
Read 2 more answers
The regions bounded by the graphs of y=x2 and y=sin2x are shaded in the figure above. What is the sum of the areas of the shaded
Alex Ar [27]

Answer:

The sum of the area of the shaded regions = 0.248685

Explanation:

The sum of the area of the shaded region is given as follows;

The point of intersection of the graphs are;

y = x/2

y = sin²x

∴ At the intersection, x/2 = sin²x

sinx = √(x/2)

Using Microsoft Excel, or Wolfram Alpha, we have that the possible solutions to the above equation are;

x = 0, x ≈ 0.55 or x ≈ 1.85

The area under the line y = x/2, between the points x = 0 and x ≈ 0.55, A₁, is given as follows

1/2 × (0.55)×0.55/2 ≈ 0.075625

The area under the line y = sin²x, between the points x = 0 and x ≈ 0.55, A₂, is given using as follows;

\int\limits {sin^n(x)} \, dx = -\dfrac{1}{n} sin^{n-1}(x) \cdot cos(x) + \dfrac{n-1}{n} \int\limits {sin^{n-2}(x)} \, dx

Therefore;

A_2 = \int\limits^{0.55}_0 {sin^2x} \, dx = \dfrac{1}{2} \left [x -sin(x) \cdot cos(x) \right]_0 ^{0.55}

∴ A₂ =1/2 × ((0.55 - sin(0.55)×cos(0.55)) - (0 - sin(0)×cos(0)) ≈ 0.0522

The shaded area, A_{1 shaded} = A₁ - A₂ = 0.075625 - 0.0522 ≈ 0.023425

Similarly, we have, between points 0.55 and 1.85

A₃ = 1/2 × (1.85 - 0.55) × 1/2 × (1.85 - 0.55) + (1.85 - 0.55) × 0.55/2 = 0.78

For y = sin²x, we have;

A_4 = \int\limits^{1.85}_{0.55} {sin^2x} \, dx = \dfrac{1}{2} \left [x -sin(x) \cdot cos(x) \right]_{0.55} ^{1.85} \approx 1.00526

The shaded area, A_{2 shaded} = A₄ - A₃ = 1.00526 - 0.78 ≈ 0.22526

The sum of the area of the shaded regions, ∑A = A_{1 shaded} + A_{2 shaded}

∴ A = 0.023425 + 0.22526 = 0.248685

The sum of the area of the shaded regions, ∑A = 0.248685

8 0
2 years ago
Which version of the underlined portion of sentence 9 (reproduced below) best conveys the writer's point about the stressful nat
VMariaS [17]

Answer: Cramped

Explanation: took the test, said it was right.

7 0
2 years ago
Read 2 more answers
Other questions:
  • The _________ is the largest organization representing psychologists in the United States.
    12·1 answer
  • Create your own definition of academic integrity as it relates to online learning?<br> I need help
    16·2 answers
  • If you could change your name to any other name name what would it be and why ?
    15·2 answers
  • What if the frequency of a light wave with a wavelength of 680 nm? WILL GIVE POSSIBLE ANSWERS
    10·1 answer
  • Anybody know the correct answer?
    8·1 answer
  • ( q/p ) + 3p^2 if q=3.5 and p=1
    10·2 answers
  • Explain how nationalism created new boundaries in Europe between 1980 and 2013
    5·1 answer
  • Why is their such a preference for boys in particular cultures?
    11·1 answer
  • 1. What is the role of citation and correct referencing when reporting on scientific investigations?
    10·1 answer
  • Hey, how's it going??
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!