Answer:
[C] 
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
- Terms/Coefficients
- Factoring
- Functions
- Function Notation
- Conjugations
<u>Calculus</u>
- Limits
- Limit Rule [Variable Direct Substitution]:

- Limit Property [Multiplied Constant]:

- Derivatives
- Definition of a Derivative:

Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>



<u>Step 2: Differentiate</u>
- Substitute in function [Function g(x)]:

- Substitute in <em>x</em> [Function g(x)]:

- Simplify:

- Rewrite:

- [Subtraction] Combine like terms:

- Factor:

- Rewrite:

- Rewrite [Limit Property - Multiplied Constant]:

- Root Conjugation:

- Multiply:

- Factor:

- Simplify:

- Evaluate limit [Limit Rule - Variable Direct Substitution]:

- Simplify:

- Multiply:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e
Answer:
$240,300
Step-by-step explanation:
Given :
Overhead cost :
Computer support = $267000
legal support = $133500
Overheads applied to audit services = (Number of CPU minutes used by Audit services * activity rate per CPU minute)
+
(number of legal hours used by Audit services * activity rate per legal hour)
The overhead applied to audit is thus :
40,000 * (267,000 / (40,000 + 10,000)) +
200 * (133500 / (200 + 800)
(40000 * 5.34) + (200 * 133.5)
= $240,300
Answer:
12xy₁₁x₃
Step-by-step explanation:
Answer:
In an isosceles triangle, the legs of the triangle have same lengths.

• substitute:

Answer:
y=2e^(−x)cosx−e^(−x)sinx
Satisfies the equation
Step-by-step explanation:
Answer:
y=2e^(−x)cosx−e^(−x)sinx
y = e^(-x)[2cosx - sinx]
Find y' and y" using product law
y' = -e^(-x)[2cosx - sinx] + e^(-x)[-2sinx - cosx]
y' = -e^(-x)[2cosx - sinx + 2sinx + cosx]
y' = -e^(-x)[3cosx + sinx]
y" = e^(-x)[3cosx + sinx] - e^(-x)[-3sinx + cosx]
y" = e^(-x)[3cosx - cosx + sinx + 3sinx]
y" = e^(-x)[2cosx + 4sinx]
y" + 2y' + 2y
e^(-x)[2cosx + 4sinx] - 2e^(-x)[3cosx + sinx] +2e^(-x)[2cosx - sinx]
e^(-x)[4sinx - 2sinx - 2sinx + 2cosx - 6 cosx + 4cosx]
= e^(-x) × 0
= 0