1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pavlova-9 [17]
3 years ago
9

(2r+3)²+(r+4)²=10 into the form of ax²+bc+c=0...How do you solve that?​

Mathematics
1 answer:
balandron [24]3 years ago
7 0

Answer:

You distribute the squared then the constant 10 will be moved to the left.

You might be interested in
Please help. the packet is due tonight
Zolol [24]

Answer:

[C]  \displaystyle \frac{-3}{250}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

  • Terms/Coefficients
  • Factoring
  • Functions
  • Function Notation
  • Conjugations

<u>Calculus</u>

  • Limits
  • Limit Rule [Variable Direct Substitution]:                                                     \displaystyle \lim_{x \to c} x = c
  • Limit Property [Multiplied Constant]:                                                           \displaystyle \lim_{x \to c} bf(x) = b \lim_{x \to c} f(x)
  • Derivatives
  • Definition of a Derivative:                                                                             \displaystyle f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

\displaystyle g(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}

\displaystyle f(x) = \frac{3}{\sqrt{x - 4}}

\displaystyle g(29)

<u>Step 2: Differentiate</u>

  1. Substitute in function [Function g(x)]:                                                           \displaystyle g(x) = \lim_{h \to 0} \frac{\frac{3}{\sqrt{x + h - 4}} - \frac{3}{\sqrt{x - 4}}}{h}
  2. Substitute in <em>x</em> [Function g(x)]:                                                                       \displaystyle g(29) = \lim_{h \to 0} \frac{\frac{3}{\sqrt{29 + h - 4}} - \frac{3}{\sqrt{29 - 4}}}{h}
  3. Simplify:                                                                                                         \displaystyle g(29) = \lim_{h \to 0} \frac{\frac{3}{\sqrt{25 + h}} - \frac{3}{5}}{h}
  4. Rewrite:                                                                                                         \displaystyle g(29) = \lim_{h \to 0} \frac{\frac{15}{5\sqrt{25 + h}} - \frac{3\sqrt{25 + h}}{5\sqrt{25 + h}}}{h}
  5. [Subtraction] Combine like terms:                                                               \displaystyle g(29) = \lim_{h \to 0} \frac{\frac{15 - 3\sqrt{25 + h}}{5\sqrt{25 + h}}}{h}
  6. Factor:                                                                                                           \displaystyle g(29) = \lim_{h \to 0} \frac{\frac{3(5 - \sqrt{25 + h})}{5\sqrt{25 + h}}}{h}
  7. Rewrite:                                                                                                         \displaystyle g(29) = \lim_{h \to 0} \frac{3(5 - \sqrt{25 + h})}{5h\sqrt{25 + h}}
  8. Rewrite [Limit Property - Multiplied Constant]:                                           \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{5 - \sqrt{25 + h}}{h\sqrt{25 + h}}
  9. Root Conjugation:                                                                                         \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{5 - \sqrt{25 + h}}{h\sqrt{25 + h}} \cdot \frac{5 + \sqrt{25 + h}}{5 + \sqrt{25 + h}}
  10. Multiply:                                                                                                         \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{-h}{5h\sqrt{25 + h} + h^2 + 25h}
  11. Factor:                                                                                                           \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{-h}{h(5\sqrt{25 + h} + h + 25)}
  12. Simplify:                                                                                                         \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{-1}{5\sqrt{25 + h} + h + 25}
  13. Evaluate limit [Limit Rule - Variable Direct Substitution]:                           \displaystyle g(29) = \frac{3}{5} \lim_{h \to 0} \frac{-1}{5\sqrt{25 + 0} + 0 + 25}
  14. Simplify:                                                                                                         \displaystyle g(29) = \frac{3}{5} \cdot \frac{-1}{50}
  15. Multiply:                                                                                                         \displaystyle g(29) = \frac{-3}{250}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Derivatives

Book: College Calculus 10e

8 0
3 years ago
Gant Accounting performs two types of services, Audit and Tax. Gant’s overhead costs consist of computer support, $267000; and l
Dahasolnce [82]

Answer:

$240,300

Step-by-step explanation:

Given :

Overhead cost :

Computer support = $267000

legal support = $133500

Overheads applied to audit services = (Number of CPU minutes used by Audit services * activity rate per CPU minute)

+

(number of legal hours used by Audit services * activity rate per legal hour)

The overhead applied to audit is thus :

40,000 * (267,000 / (40,000 + 10,000)) +

200 * (133500 / (200 + 800)

(40000 * 5.34) + (200 * 133.5)

= $240,300

7 0
3 years ago
Simplify the expression <br><br> 12x^-6y^10X3x^7y
harkovskaia [24]

Answer:

12xy₁₁x₃

Step-by-step explanation:

4 0
3 years ago
The length of the base of an isosceles triangle is x. The length of a leg is 2x-6. The perimeter of the triangle is 23 . Find x.
expeople1 [14]

Answer:

In an isosceles triangle, the legs of the triangle have same lengths.

{ \tt{perimeter = side + side + side}}

• substitute:

{ \tt{23 = x + 2(2x - 6)}} \\  \\ { \tt{23 = x + 4x - 12}} \\  \\ {  \tt{5x = 35}} \\  \\ { \boxed{ \tt{ \:  \: x = 7 \:  \: }}}

7 0
3 years ago
Show that y=2e^(−x) cos(x)−e^(−x) sin(x) is a solution to y''+2y'+2y=0.
Furkat [3]

Answer:

y=2e^(−x)cosx−e^(−x)sinx

Satisfies the equation

Step-by-step explanation:

Answer:

y=2e^(−x)cosx−e^(−x)sinx

y = e^(-x)[2cosx - sinx]

Find y' and y" using product law

y' = -e^(-x)[2cosx - sinx] + e^(-x)[-2sinx - cosx]

y' = -e^(-x)[2cosx - sinx + 2sinx + cosx]

y' = -e^(-x)[3cosx + sinx]

y" = e^(-x)[3cosx + sinx] - e^(-x)[-3sinx + cosx]

y" = e^(-x)[3cosx - cosx + sinx + 3sinx]

y" = e^(-x)[2cosx + 4sinx]

y" + 2y' + 2y

e^(-x)[2cosx + 4sinx] - 2e^(-x)[3cosx + sinx] +2e^(-x)[2cosx - sinx]

e^(-x)[4sinx - 2sinx - 2sinx + 2cosx - 6 cosx + 4cosx]

= e^(-x) × 0

= 0

7 0
4 years ago
Other questions:
  • MULTIPLE CHOICE GEOMETRY QUESTION
    10·2 answers
  • Triangle abc has been dilated about point a by scale a factor of 1/3
    15·2 answers
  • I can't figure out the area. please help. I'm confused. my teacher said to solve it like a triangle
    10·1 answer
  • Tim had $150 to spend on 3 pairs of pants. After buying
    7·1 answer
  • Please someone I need help!!
    13·1 answer
  • What is /frac{3}{125} of 1875t
    7·1 answer
  • You roll a 6-sided die twice. what is the probability of getting a 1 on the first roll or a 6 on the second roll?
    11·2 answers
  • 9-31 3 | | what is the answer<br>​
    8·1 answer
  • If you flip a coin 200 times, approximately how many times will it land heads up?
    12·2 answers
  • Can someone please help me with this?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!