Answer:
The percentage of the bag that should have popped 96 kernels or more is 2.1%.
Step-by-step explanation:
The random variable <em>X</em> can be defined as the number of popcorn kernels that popped out of a mini bag.
The mean is, <em>μ</em> = 72 and the standard deviation is, <em>σ</em> = 12.
Assume that the population of the number of popcorn kernels that popped out of a mini bag follows a Normal distribution.
Compute the probability that a bag popped 96 kernels or more as follows:
Apply continuity correction:


*Use a <em>z</em>-table.
The probability that a bag popped 96 kernels or more is 0.021.
The percentage is, 0.021 × 100 = 2.1%.
Thus, the percentage of the bag that should have popped 96 kernels or more is 2.1%.
Answer:
100%
Step-by-step explanation:
Since you know that there was 96 total bracelets and Jackie made them for 8 days, if you are finding how much was made each day, it is division.
96/8=the number of bracelets made each day
Hope this helps <span>1) </span><span>Equations with negative values for a</span><span> produce graphs that open down and equations with a positive values for a</span> produce graphs that open up.
<span>2)<span> </span></span><span>As the absolute value of a gets larger our graphs become more narrow (they shoot towards positive or negative infinity faster). This is more interesting than it might appear. If you consider the second derivative of any quadratic it will be the a</span><span> value. The second derivative represents acceleration, so the larger the a value the faster the increase of velocity and accordingly a quicker progression towards positive or negative infinity. Check this out in graphing calculator, press play to vary the value of a from -20 to 20. Notice that when the value of a approaches zero, the approximates a line, and of course when a is 0 we have the line y</span><span> = 2x</span><span> – 1.</span>