Answer:
3, in both a), b)
Step-by-step explanation:
a) The slope of the line tangent to the curve that passes through the point (2,-10) is equal to the derivative of p at x=2.
Using differentiation rules (power rule and sum rule), the derivative of p(x) for any x is
. In particular, the value we are looking for is
.
If you would like to compute the equation of the tangent line, we can use the point-slope equation to get 
b) The instantaneus rate of change is also equal to the derivative of P at the point x=2, that is, P'(2). This is equal to
.
Answer:
5555555555555555555225313
Step-by-step explanation:
3
6
554
Answer:
we need the data to answer the question
Answer:
y - 5 = -4(x + 3)
Step-by-step explanation:
This question is asking you to use and make an equation using the base of the "point-slope form." This is a common equation used when dealing with coordinates and graphs in math. The point-slope form equation looks like this:
y - y₁ = m(x - x₁).
We are going to need to use this equation base to create our problem from the information given. If you are wondering what those subscripts of 1 mean (the 1 in y₁ and x₁), I will explain. Remember that:
slope (m) = <u>y - y₁</u>
x - x₁
So, our first y value (which is the y-coordinate of 5 in [-3, 5]) can be added into the problem base that I had mentioned above:
y - <u>5</u> = m(x - x₁).
Now, we need to place the first x value (which is the -3 in [-3, 5]) can be added into the base problem once more:
y - 5 = m(x - (<u>-3</u>)).
Because a negative number with a negative symbol in front of it creates a positive, we can change that as well:
y - 5 = m(x + 3).
Fortunately, the question provides a slope ready for use. The question says that the slope is -4, so we can place this into the equation now:
y - 5 = -4(x + 3).
I hope that this helps.
Answer:
What flavors are there?
Step-by-step explanation: