Answer:
Im not sure but lets play warzone
Step-by-step explanation:
Collin's sampling method will better represent the entire population.
<h3>Missing part of the question</h3>
Determine which sampling method will better represent the entire population.
<h3>How to determine the better method?</h3>
From the question, we understand the Collin selected random names from the school directory.
While Karl surveyed only the students sitting close to him.
Karl's method is biased because students sitting far from him do not have a chance of being surveyed.
Hence, Collin's sampling method will better represent the entire population.
Read more about sampling method at:
brainly.com/question/16587013
#SPJ1
Answer:
see explanation
Step-by-step explanation:
Under a reflection in the x- axis
a point (x, y ) → (x, - y ) , then
A (- 1, - 17 ) → A' (- 1, 17 )
B (0, - 12 ) → B' (0, 12 )
C (- 5, - 11 ) → C' (- 5, 11 )
D (- 6, - 16 ) → D' (- 6, 16 )
Answer:
-0.4
Step-by-step explanation:
If using a number line, start at 0.2 and go backwards 0.6 to get to -0.4
Answer:
a) ![A=\left[\begin{array}{ccc}1&2&3\\1&-1&1\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%262%263%5C%5C1%26-1%261%5Cend%7Barray%7D%5Cright%5D)
![b=\left[\begin{array}{ccc}0\\1\end{array}\right]](https://tex.z-dn.net/?f=b%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
b) ![||Ax-b||^{2} =(-bx_{2}+4)^{2} (-4x_{1} +3x_{2} -1)^{2} +(x_{1} +8x_{2} -3)^{2}](https://tex.z-dn.net/?f=%7C%7CAx-b%7C%7C%5E%7B2%7D%20%3D%28-bx_%7B2%7D%2B4%29%5E%7B2%7D%20%20%28-4x_%7B1%7D%20%2B3x_%7B2%7D%20-1%29%5E%7B2%7D%20%2B%28x_%7B1%7D%20%2B8x_%7B2%7D%20-3%29%5E%7B2%7D)
c) ![A=\left[\begin{array}{ccc}0&6\sqrt{2} &0\\\sqrt{3} &3\sqrt{3} &0\\2&-16&0\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%266%5Csqrt%7B2%7D%20%260%5C%5C%5Csqrt%7B3%7D%20%263%5Csqrt%7B3%7D%20%260%5C%5C2%26-16%260%5Cend%7Barray%7D%5Cright%5D)
![x=\left[\begin{array}{ccc}x_{1} \\x_{2} \\x_{3} \end{array}\right]](https://tex.z-dn.net/?f=x%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx_%7B1%7D%20%5C%5Cx_%7B2%7D%20%5C%5Cx_%7B3%7D%20%5Cend%7Barray%7D%5Cright%5D)
![b=\left[\begin{array}{ccc}-\sqrt{2} \\\sqrt{3} \\6\end{array}\right]](https://tex.z-dn.net/?f=b%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-%5Csqrt%7B2%7D%20%5C%5C%5Csqrt%7B3%7D%20%5C%5C6%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation:
a) considering the equation:
Minimize ![x_{1}^{2} +2x_{2}x^{2} +3x_{3}^{2}+(x_{1} -x_{2} +x_{3} -1)^{2} +(-x_{1} -4x_{2} +2)^{2}](https://tex.z-dn.net/?f=x_%7B1%7D%5E%7B2%7D%20%20%2B2x_%7B2%7Dx%5E%7B2%7D%20%20%2B3x_%7B3%7D%5E%7B2%7D%2B%28x_%7B1%7D%20%20%20-x_%7B2%7D%20%2Bx_%7B3%7D%20-1%29%5E%7B2%7D%20%2B%28-x_%7B1%7D%20-4x_%7B2%7D%20%2B2%29%5E%7B2%7D)
(matrix A)
vector b
![b=\left[\begin{array}{ccc}0\\1\end{array}\right]](https://tex.z-dn.net/?f=b%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
b) If Pxn is matrix B and p-vector d, we have:
minimize ![(-6x_{2}+4)^{2} +(-4x_{1} +3x_{2} -1)+(x_{1} +8x_{2} -3)^{2}](https://tex.z-dn.net/?f=%28-6x_%7B2%7D%2B4%29%5E%7B2%7D%20%20%2B%28-4x_%7B1%7D%20%2B3x_%7B2%7D%20-1%29%2B%28x_%7B1%7D%20%2B8x_%7B2%7D%20-3%29%5E%7B2%7D)
![Ax=\left[\begin{array}{ccc}0&-6&0\\-4&3&0\\1&8&0\end{array}\right]](https://tex.z-dn.net/?f=Ax%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%26-6%260%5C%5C-4%263%260%5C%5C1%268%260%5Cend%7Barray%7D%5Cright%5D)
![\left[\begin{array}{ccc}x_{1} \\x_{2} \\x_{3} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx_%7B1%7D%20%5C%5Cx_%7B2%7D%20%5C%5Cx_%7B3%7D%20%5Cend%7Barray%7D%5Cright%5D)
![b=\left[\begin{array}{ccc}-4\\1\\3\end{array}\right]](https://tex.z-dn.net/?f=b%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-4%5C%5C1%5C%5C3%5Cend%7Barray%7D%5Cright%5D)
![Ax-b=\left[\begin{array}{ccc}-bx_{2}+4 \\-4x_{1}+3x_{2}-1 \\x_{1}+8x_{2}-3 \end{array}\right] =1](https://tex.z-dn.net/?f=Ax-b%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-bx_%7B2%7D%2B4%20%5C%5C-4x_%7B1%7D%2B3x_%7B2%7D-1%20%20%5C%5Cx_%7B1%7D%2B8x_%7B2%7D-3%20%20%5Cend%7Barray%7D%5Cright%5D%20%3D1)
![||Ax-b||^{2} =(-bx_{2}+4)^{2} (-4x_{1} +3x_{2} -1)^{2} +(x_{1} +8x_{2} -3)^{2}](https://tex.z-dn.net/?f=%7C%7CAx-b%7C%7C%5E%7B2%7D%20%3D%28-bx_%7B2%7D%2B4%29%5E%7B2%7D%20%20%28-4x_%7B1%7D%20%2B3x_%7B2%7D%20-1%29%5E%7B2%7D%20%2B%28x_%7B1%7D%20%2B8x_%7B2%7D%20-3%29%5E%7B2%7D)
c) minimize ![2(-bx_{2}+4)^{2} +3(-4x_{1} +3x_{2} -1)^{2} +4(x_{1} -x_{2} -3)^{2} -(6\sqrt{2}x_{2} +4\sqrt{2} )^{2} +(-4\sqrt{3} x_{1} +3\sqrt{3}x_{2} -\sqrt{3})^{2} +(2x_{1} -16x_{2} -6)^{2}](https://tex.z-dn.net/?f=2%28-bx_%7B2%7D%2B4%29%5E%7B2%7D%20%20%2B3%28-4x_%7B1%7D%20%2B3x_%7B2%7D%20-1%29%5E%7B2%7D%20%2B4%28x_%7B1%7D%20-x_%7B2%7D%20-3%29%5E%7B2%7D%20-%286%5Csqrt%7B2%7Dx_%7B2%7D%20%20%2B4%5Csqrt%7B2%7D%20%29%5E%7B2%7D%20%2B%28-4%5Csqrt%7B3%7D%20x_%7B1%7D%20%2B3%5Csqrt%7B3%7Dx_%7B2%7D%20%20-%5Csqrt%7B3%7D%29%5E%7B2%7D%20%20%2B%282x_%7B1%7D%20-16x_%7B2%7D%20-6%29%5E%7B2%7D)
in matrix:
![A=\left[\begin{array}{ccc}0&6\sqrt{2} &0\\\sqrt{3} &3\sqrt{3} &0\\2&-16&0\end{array}\right]](https://tex.z-dn.net/?f=A%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%266%5Csqrt%7B2%7D%20%260%5C%5C%5Csqrt%7B3%7D%20%263%5Csqrt%7B3%7D%20%260%5C%5C2%26-16%260%5Cend%7Barray%7D%5Cright%5D)
![x=\left[\begin{array}{ccc}x_{1} \\x_{2} \\x_{3} \end{array}\right]](https://tex.z-dn.net/?f=x%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx_%7B1%7D%20%5C%5Cx_%7B2%7D%20%5C%5Cx_%7B3%7D%20%5Cend%7Barray%7D%5Cright%5D)
![b=\left[\begin{array}{ccc}-\sqrt{2} \\\sqrt{3} \\6\end{array}\right]](https://tex.z-dn.net/?f=b%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-%5Csqrt%7B2%7D%20%5C%5C%5Csqrt%7B3%7D%20%5C%5C6%5Cend%7Barray%7D%5Cright%5D)