Answer:
![4x^{3} y^{2} (\sqrt[3]{4 x y})](https://tex.z-dn.net/?f=4x%5E%7B3%7D%20y%5E%7B2%7D%20%28%5Csqrt%5B3%5D%7B4%20x%20y%7D%29)
Step-by-step explanation:
Another complex expression, let's simplify it step by step...
We'll start by re-writing 256 as 4^4
![\sqrt[3]{256 x^{10} y^{7} } = \sqrt[3]{4^{4} x^{10} y^{7} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B256%20x%5E%7B10%7D%20y%5E%7B7%7D%20%7D%20%3D%20%5Csqrt%5B3%5D%7B4%5E%7B4%7D%20x%5E%7B10%7D%20y%5E%7B7%7D%20%7D)
Then we'll extract the 4 from the cubic root. We will then subtract 3 from the exponent (4) to get to a simple 4 inside, and a 4 outside.
![\sqrt[3]{4^{4} x^{10} y^{7} } = 4 \sqrt[3]{4 x^{10} y^{7} }](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7B4%5E%7B4%7D%20x%5E%7B10%7D%20y%5E%7B7%7D%20%7D%20%3D%204%20%5Csqrt%5B3%5D%7B4%20x%5E%7B10%7D%20y%5E%7B7%7D%20%7D)
Now, we have x^10, so if we divide the exponent by the root factor, we get 10/3 = 3 1/3, which means we will extract x^9 that will become x^3 outside and x will remain inside.
![4 \sqrt[3]{4 x^{10} y^{7} } = 4x^{3} \sqrt[3]{4 x y^{7} }](https://tex.z-dn.net/?f=4%20%5Csqrt%5B3%5D%7B4%20x%5E%7B10%7D%20y%5E%7B7%7D%20%7D%20%3D%204x%5E%7B3%7D%20%5Csqrt%5B3%5D%7B4%20x%20y%5E%7B7%7D%20%7D)
For the y's we have y^7 inside the cubic root, that means the true exponent is y^(7/3)... so we can extract y^2 and 1 y will remain inside.
![4x^{3} \sqrt[3]{4 x y^{7} } = 4x^{3} y^{2} \sqrt[3]{4 x y}](https://tex.z-dn.net/?f=4x%5E%7B3%7D%20%5Csqrt%5B3%5D%7B4%20x%20y%5E%7B7%7D%20%7D%20%3D%204x%5E%7B3%7D%20y%5E%7B2%7D%20%5Csqrt%5B3%5D%7B4%20x%20y%7D)
The answer is then:
![4x^{3} y^{2} \sqrt[3]{4 x y} = 4x^{3} y^{2} (\sqrt[3]{4 x y})](https://tex.z-dn.net/?f=4x%5E%7B3%7D%20y%5E%7B2%7D%20%5Csqrt%5B3%5D%7B4%20x%20y%7D%20%3D%204x%5E%7B3%7D%20y%5E%7B2%7D%20%28%5Csqrt%5B3%5D%7B4%20x%20y%7D%29)
Answer:
278.64cm²
Step-by-step explanation:
Area of the sheet left out = Area of the square - Area of the 9 circles
Area of the square = L^2
L is the side length of the square
A = 36^2
Area of the square = 1296cm^2
Diameter of a circle = 38/3 = 12cm
Area of a circle = πr²
r is the radius = 12/2 = 6cm
Area of a circle = 3.14(6)²
Area of a circle = 3.14 * 36
Area of a circle = 113.04cm²
Area of 9 circles = 9 * 113.04
Area of 9 circles = 1,017.36cm²
Area of the left over = 1296 - 1,017.36
Area of the left over = 278.64cm²
Answer:
A) 150°
Step-by-step explanation:
Hope I helped you
Answer:
c
Step-by-step explanation:
substitute (2,1) and (5,4) into each equation
2-1=1 and 5-4=1 so c is correct
Answer:
the anwer is x
Step-by-step explanation: