Neither one will ever hit the axis I think? if its x=3.5 then its horizontal but its above the x axis. Same with the second one. its vertical and will never hit the y axis. Not sure how to write that into those boxes but I think there isn't an intercept.
Answer:
(-4 , 8)
Step-by-step explanation:
The x-axis is the horizontal line. In this case, if you are reflecting over the x-axis, you are flipping the sign of the y-coordinate.
Same with the y-axis. If you are reflecting over the y-axis, you are flipping the sign of the x-coordinate.
In this case, reflect across the x-axis. Flip the sign of the y: (x , y)
(-4 , -8) reflected over the x-axis is (-4 , 8).
~
The slopes of the original function y = |x| are m = 1 and m = -1 (m is the variable used to represent slope).
when you add a coefficient (number) in front of |x|, it will either make the slopes steeper or more flat. the larger the value of the coefficient, the steeper the slope will be (vice versa for a coefficient smaller than 1, which would make the slope more flat than the parent(original) function).
because these are absolute value functions, they will have two slopes. one slope for the end going up from left to right, and one for the end going down from left to right. this means that one slope must be positive and the other slope must be negative for each function.
with this in mind, the slopes of y = 2|x| are m = 2 and m = -2. the coefficient of 2 narrows the function by a factor of 2 (it is twice as narrow as the parent function). the same rules apply to y = 4|x| with the slopes of this function as m = -4 and m = 4 (it is 4 times narrower than the parent function).
with the fraction coefficients, the function is being widened. therefore, the slopes of y = 1/2 |x| are m = -1/2 and m = 1/2. the slopes of y = 1/5 |x| are m = -1/5 and m = 1/5.
Answer:
25,000
Step-by-step explanation:
100,000*25%= 25,000