Answer:
$144.70
Step-by-step explanation:
Calculation to determine how much greater will the amount of interest capitalized be than the minimum amount that she could pay to prevent interest capitalization
First step is to determine the Interest only monthly repayments
Using this formula
I=Prt
where,
P=$6925
r=0.05/1
t=1
Let plug in the formula
I=6925*0.05/12
I= $28.854166666
Second step is to determine the amount she will owe after 4 years
Using this formula
S=P(1+r)n
Let plug in the formula
S=6925*(1+0.05/12)4*12
S=6925*(1+0.05/12)48
S=$8454.70
Third step is to determine the Interest part
Interest =8454.70 - 6925
Interest = $1529.70
Now let determine the how much greater will the amount of interest capitalized be
Interest capitalized=1529.70 - 1385.00
Interest capitalized =$144.70
Therefore how much greater will the amount of interest capitalized be than the minimum amount that she could pay to prevent interest capitalization is $144.70
Answers:
A ' = (-2, -3)
B ' = (0, -3)
C ' = (-1, 1)
=======================================================
Explanation:
To apply an x axis reflection, we simply change the sign of the y coordinate from positive to negative, or vice versa. The x coordinate stays as is.
Algebraically, the reflection rule used can be written as 
Applying this rule to the three given points will mean....
- Point A = (-2, 3) becomes A ' = (-2, -3)
- Point B = (0, 3) becomes B ' = (0, -3)
- Point C = (-1, -1) becomes C ' = (-1, 1)
The diagram is provided below.
Side note: Any points on the x axis will stay where they are. That isn't the case here, but its for any future problem where it may come up. This only applies to x axis reflections.
Answer:
1.1352 L
Step-by-step explanation:
L = qt 1.0567
qt = 0.946 L
1:4 = 5
0.946/5 = 0.1892 L one part
0.1892 x 11 = 2.0812 11 parts as 1+10 =11
Answer therefore is subtracting 5 from 11 parts to get the final 6 parts added = 2.0812 - 0.946
= 1.1352 L