Step-by-step explanation:
√((1 + sin x) / (1 − sin x)) + √((1 − sin x) / (1 + sin x))
Square and take the square root.
√[√((1 + sin x) / (1 − sin x)) + √((1 − sin x) / (1 + sin x))]²
√[(1 + sin x) / (1 − sin x) + 2 + (1 − sin x) / (1 + sin x)]
Add the fractions using least common denominator.
√[((1 + sin x)² + (1 − sin x)²) / (1 − sin²x) + 2]
√[(1 + 2 sin x + sin²x + 1 − 2 sin x + sin²x) / (1 − sin²x) + 2]
√[(2 + 2 sin²x) / (1 − sin²x) + 2]
Use Pythagorean identity:
√[(2 + 2 sin²x) / (cos²x) + 2]
√[2 sec²x + 2 tan²x + 2]
√[2 sec²x + 2 (tan²x + 1)]
Use Pythagorean identity:
√[2 sec²x + 2 sec²x]
√[4 sec²x]
±2 sec x
If x is in the second quadrant, then sec x < 0.
-2 sec x
To solve for this, we need to find for the value of x
when the 1st derivative of the equation is equal to zero (or at the
extrema point).
So what we have to do first is to derive the given
equation:
f (x) = x^2 + 4 x – 31
Taking the first derivative f’ (x):
f’ (x) = 2 x + 4
Setting f’ (x) = 0 and find for x:
2 x + 4 = 0
x = - 2
Therefore the value of a is:
a = f (-2)
a = (-2)^2 + 4 (-2) – 31
a = 4 – 8 – 31
a = - 35
Answer:
8+2x
Step-by-step explanation:
Mode is singing cause it shows up 7 times