Answer:
Step-by-step explanation:
There are four axioms to prove the triangles are contruent.They are
SSS(side side side axiom)
SAS(side angle side axiom)
AAS(angle angle side axiom)
ASA(angle side angle axiom)
RHS (right angle hypotenuse side axiom)
here two triangles are congruent by RHS axiom
Answer:
-4.6
Step-by-step explanation:
-2.3-2.3=-4.6
For the given situation we have a total of 259,459,200 permutations.
<h3>
How many permutations are?</h3>
First, how we know that it is a permutation?
Because the order matters, we aren't only selecting 8 out of the 15 people, but these 8 selected also have an order (is not the same thing to finish the race first than fourth, for example).
Then we need to find the number of permutations, to do it, we need to find the numbers of options for each of the 8 positions.
- For the first position there are 15 options.
- For the second position ther are 14 options (one runner already finished).
- For the third position there are 13 options.
- And so on.
Then the total number of permutations (product between the numbers of options) is:
P = 15*14*13*12*11*10*9*8 = 259,459,200
If you want to learn more about permutations:
brainly.com/question/11732255
#SPJ1
Answer:
.57%
Step-by-step explanation:
if you add $0.91 to $51.09 to get 52, then you divide $52 by $0.91 the divide it by 100.
Answer:
see explaination
Step-by-step explanation:
Using the formulla that
sum of terms number of terms sample mean -
Gives the sample mean as \mu=17.954
Now varaince is given by
s^2=\frac{1}{50-1}\sum_{i=1}^{49}(x_i-19.954)^2=9.97
and the standard deviation is s=\sqrt{9.97}=3.16
b) The standard error is given by
\frac{s}{\sqrt{n-1}}=\frac{3.16}{\sqrt{49}}=0.45
c) For the given data we have the least number in the sample is 12.0 and the greatest number in the sample is 24.1
Q_1=15.83, \mathrm{Median}=17.55 and Q_3=19.88
d) Since the interquartile range is Q_3-Q_1=19.88-15.83=4.05
Now the outlier is a number which is greater than 19.88+1.5(4.05)=25.96
or a number which is less than 15.83-1.5(4.05)=9.76
As there is no such number so the given sample has no outliers