Answer:
Step-by-step explanation:
Researchers measured the data speeds for a particular smartphone carrier at 50 airports.
The highest speed measured was 76.6 Mbps.
n= 50
X[bar]= 17.95
S= 23.39
a. What is the difference between the carrier's highest data speed and the mean of all 50 data speeds?
If the highest speed is 76.6 and the sample mean is 17.95, the difference is 76.6-17.95= 58.65 Mbps
b. How many standard deviations is that [the difference found in part (a)]?
To know how many standard deviations is the max value apart from the sample mean, you have to divide the difference between those two values by the standard deviation
Dif/S= 58.65/23.39= 2.507 ≅ 2.51 Standard deviations
c. Convert the carrier's highest data speed to a z score.
The value is X= 76.6
Using the formula Z= (X - μ)/ δ= (76.6 - 17.95)/ 23.39= 2.51
d. If we consider data speeds that convert to z scores between minus−2 and 2 to be neither significantly low nor significantly high, is the carrier's highest data speed significant?
The Z value corresponding to the highest data speed is 2.51, considerin that is greater than 2 you can assume that it is significant.
I hope it helps!
Answer:
No solution
Step-by-step explanation:
Not sure tbh
Answer:
22:2 33:3 44:4 ...
Step-by-step explanation:
just multiply numbers by natural numbers
Answer:
We accept H₀ . We don´t have enough evidence to express the publisher claim is not true
Step by Step explanation:
We must evaluate if the mean of the price of college textbooks is different from the value claimed by the publisher
n < 30 then we must use t - distrbution
degree of freedom n - 1 df = 22 - 1 df = 21
As the question mentions " different " that means, a two-tail test
At 0,01 significance level α = 0,01 α/2 = 0,005
and t(c) = 2,831
Test Hypothesis
Null Hypothesis H₀ μ = μ₀
Alternative hypothesis Hₐ μ ≠ μ₀
To calculate t(s)
t(s) = ( μ - μ₀ ) /σ/√n
t(s) = ( 433,50 - 385 ) / 86,92 / √22
t(s) = 2,6171
Comparing t(c) and t(s)
t(s) < t(c)
Then t(s) is in the acceptance region we accept H₀. We don´t have enough evidence to claim that mean price differs from publisher claim
The answer is A.(-10,-10)