1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alukav5142 [94]
3 years ago
7

Find the greatest common factor of the following monomials: 39c^2 9c^3'

Mathematics
1 answer:
lana66690 [7]3 years ago
5 0

Answer:

3c^2

Step-by-step explanation:

You might be interested in
My question... please answer asap
konstantin123 [22]

Answer:

slope=1/4

y-intercept=3

y=.25x+3

Step-by-step explanation:

slope=rise over run so

slope=1/4

y-intercept is the value of y where the line crosses the y axis..

y-intercept=3

In y=mx+b form m is slope and b is y-intercept so...

y=.25x+3

6 0
3 years ago
3. for each item, decide whether or not the given expression is defined. for each item that is defined, compute the result. (a)
Sati [7]

The results of given matrices can be obtained using matrix multiplication.

<h3>Find the results of the given matrices:</h3>

Here in the question it is given that,

A =  \left[\begin{array}{ccc}1&-1&2\\3&1&4\end{array}\right], B = \left[\begin{array}{ccc}2&-1&3\\5&1&2\\4&6&-2\end{array}\right], C = \left[\begin{array}{ccc}1\\-1\\2\end{array}\right], D = \left[\begin{array}{ccc}2&-2&3\end{array}\right],

E =\left[\begin{array}{ccc}2-i&1+i\\-i&2+4i\end{array}\right], F = \left[\begin{array}{ccc}i&1-3i\\0&4+i\end{array}\right]

We have to find AB, BC, CA, CD, C^{T} A^{T}, F², BD^{T}, A^{T} A and FE.

  • AB = \left[\begin{array}{ccc}1&-1&2\\3&1&4\end{array}\right]\left[\begin{array}{ccc}2&-1&3\\5&1&2\\4&6&-2\end{array}\right]

a₁₁ = 1×2 + (-1)×5 + 2×4 = 5, a₁₂ = 1×(-1) + (-1)×1 + 2×6 = 10, a₁₃ = 1×3 + (-1)×2 + 2×(-2) = -3, a₂₁ = 3×2 + 1×5 + 4×4 = 27, a₂₂ = 3×(-1) + 1×1 + 4×6 = 22, a₂₃ = 3×3 + 1×2 + 4×(-2) = 3

AB = \left[\begin{array}{ccc}5&10&-3\\27&22&3\end{array}\right]  

  • BC =  \left[\begin{array}{ccc}2&-1&3\\5&1&2\\4&6&-2\end{array}\right]   \left[\begin{array}{ccc}1\\-1\\2\end{array}\right]

a₁₁ = 2×1 + (-1)×(-1) + 3×2 = 9, a₂₁ = 5×1 + 1×(-1) + 2×2 = 8, a₃₁ = 4×1 + 6×(-1) + (-2)×2 = -6      

BC  = \left[\begin{array}{ccc}9\\8\\-6\end{array}\right]

  • CA, CA is not defined since dimension of the matrices are 3×1 and 2×3  
  • A^{T}E = \left[\begin{array}{ccc}1&3\\-1&1\\2&4\end{array}\right]\left[\begin{array}{ccc}2-i&1+i\\-i&2+4i\end{array}\right]

a₁₁ = 1×(2-i) + 3×(-i) = 2-4i, a₁₂ = 1x(1+i) +  3×(2+4i) = 7+13i, a₂₁ = -1×(2-i) + 1×(-i) = -2, a₂₂ = -1×(1+i) + 1×(2+4i) = 1+3i, a₃₁ = 2×(2-i) + 4×(-i) = 4-6i, a₃₂ = 2×(1+i) + 4×(2+4i) = 10+18i  

A^{T}E = \left[\begin{array}{ccc}2-4i&7+13i\\-2&1+3i\\4-6i&10+18i\end{array}\right]

  • CD = \left[\begin{array}{ccc}1\\-1\\2\end{array}\right]   \left[\begin{array}{ccc}2&-2&3\end{array}\right]

a₁₁ = 1×2 = 2, a₁₂ = 1×(-2) = -2, a₁₃ = 1×3 = 3, a₂₁ = -1×2 = -2, a₂₂ = -1×(-2) = 2, a₂₃ = -1×3 = -3,a₃₁= 2×2 = 4, a₃₂ = 2×(-2) = -4, a₃₃ = 2×3 = 6

CD = \left[\begin{array}{ccc}2&-2&3\\-2&2&-3\\4&-4&6\end{array}\right]

  • C^{T} A^{T} =\left[\begin{array}{ccc}1&-1&2\end{array}\right]\left[\begin{array}{ccc}1&3\\-1&1\\2&4\end{array}\right]

a₁₁ = 1×1 + (-1)×(-1) + 2×2 = 6, a₁₂ = 1×3 + (-1)×1 + 2×4 = 10

C^{T}A^{T}=\left[\begin{array}{ccc}6&10\end{array}\right]

  • F² = \left[\begin{array}{ccc}i&1-3i\\0&4+i\end{array}\right]\left[\begin{array}{ccc}i&1-3i\\0&4+i\end{array}\right]

a₁₁ = i×i + (1-3i)×0 = -1,a₁₂ = i×(1-3i) + (1-3i)×(4+i) = 10-10i, a₂₁= 0×i + (4+i)×0 = 0, a₂₂ = 0×(1-3i) + (4+i)×(4+i) = 15+8i

F² = \left[\begin{array}{ccc}-1&10-10i\\0&15+8i\end{array}\right]

  • BD^{T}=\left[\begin{array}{ccc}2&-1&3\\5&1&2\\4&6&-2\end{array}\right]\left[\begin{array}{ccc}2\\-2\\3\end{array}\right]

a₁₁ = 2×2 + (-1)×(-2) + 3×3 = 15, a₂₁ = 5×2 + 1×(-2) + 2×3 = 14, a₃₁ = 4×2 + 6×(-2) + (-2)×3 = -10

BD^{T}= \left[\begin{array}{ccc}15\\14\\-10\end{array}\right]

  • A^{T} A=\left[\begin{array}{ccc}1&3\\-1&1\\2&4\end{array}\right] \left[\begin{array}{ccc}1&-1&2\\3&1&4\end{array}\right]

a₁₁ = 1×1 + 3×3 = 10, a₁₂ = 1×(-1) + 3×1 = 2, a₁₃ = 1×2 + 3×4 = 14, a₂₁ = -1×1 + 1×3 = 2, a₂₂ = -1×(-1) + 1×1 = 2, a₂₃ = -1×2 + 1×4 = 2, a₃₁ = 2×1 + 4×3 = 14, a₃₂ = 2×(-1) + 4×1 = 2, a₃₃ = 2×2 + 4×4 = 20

A^{T} A=\left[\begin{array}{ccc}10&2&14\\2&2&2\\14&2&20\end{array}\right]

  • FE =  \left[\begin{array}{ccc}i&1-3i\\0&4+i\end{array}\right]   \left[\begin{array}{ccc}2-i&1+i\\-i&2+4i\end{array}\right]

a₁₁ = i×(2-i) + (1-3i)×(-i) = -2+i, a₁₂ = i×(1+i) + (1-3i)×(2+4i) = 13-i, a₂₁ = 0×(2-i) + (4+i)×(-i) = 1-4i, a₂₂ = 0×(1+i) + (4+i)×(2+4i) = 4+18i

FE = \left[\begin{array}{ccc}-2+i&13-i\\1-4i&4+18i\end{array}\right]

Hence we can obtain the results of the required matrices using matrix multiplication.

Disclaimer: The question was given incomplete on the portal. Here is the complete question.

Question: Let A =  \left[\begin{array}{ccc}1&-1&2\\3&1&4\end{array}\right], B = \left[\begin{array}{ccc}2&-1&3\\5&1&2\\4&6&-2\end{array}\right], C = \left[\begin{array}{ccc}1\\-1\\2\end{array}\right],                              D = \left[\begin{array}{ccc}2&-2&3\end{array}\right], E =\left[\begin{array}{ccc}2-i&1+i\\-i&2+4i\end{array}\right], F = \left[\begin{array}{ccc}i&1-3i\\0&4+i\end{array}\right]

For each item, decide whether or not the given expression is defined. for each item that is defined, compute the result.

AB, BC, CA, CD, C^{T} A^{T}, F², BD^{T}, A^{T} A and FE

Learn more about matrix here:

brainly.com/question/28180105

#SPJ4

8 0
2 years ago
A frog is jumping onto a lily pad. Its height, h (in feet), is recorded at various seconds, t, in the
myrzilka [38]

Answer:

I don't know

Step-by-step explanation:

sorry

7 0
3 years ago
MOVIE TICKETS A company operates three movie
love history [14]

Answer:

438+374+512=1324

Step-by-step explanation:

so that means that they sold 1324 tickets

6 0
3 years ago
Dividing by 100 gives the same answer as multiplying by what number?explain,and give an example
Phantasy [73]
Dividing by 100 is the same as multiplying by 1/100 or 0.01, because when you divide by a fraction, in this case 100/1, you actually multiply by the reciprocal, which would be 1/100. For example 4/100 = 4 x 1/100 = 4/100 = 1/25 = 0.04. You can also just move the decimal two place values to the left to divide by 100. For example, 4/100 = 4. /100 = 0.04 = 1/25
3 0
3 years ago
Other questions:
  • Simplify. (3.1)⋅(10.75−3.55)
    14·2 answers
  • Sarah bought 18 eggs from the store. How maany dozen eggs does she buy?
    8·1 answer
  • Plz help!! Will give 30 points!!
    7·2 answers
  • What are the possible numbers of positive, negative, and complex zeros of f(x) = x6 − x5 − x4 + 4x3 − 12x2 + 12?
    5·2 answers
  • 4x^2 + 36 / 4x × 1 / 5x
    12·1 answer
  • 2 (x – 4) = -5<br> How do I do this
    10·1 answer
  • Let t(x) = 3x-8 and s(t(x)) = x^2 + 3x - 2. Find s(1).
    12·1 answer
  • Nth term of this sequence -5 -2 3 10 19
    5·1 answer
  • Cathy is paid at a rate of K7.20 per hour for a basic hour-week of 70 hours. She is paid time-and-a-half for over-time during th
    5·1 answer
  • The table represents the cost of flowers at the Tigerlily Flower Shop.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!