1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zalisa [80]
3 years ago
5

I need help asap i will give brainlist

Mathematics
1 answer:
antiseptic1488 [7]3 years ago
3 0
The answer would be B.About 25 inches! :)
You might be interested in
Write the integral in one variable to find the volume of the solid obtained by rotating the first-quadrant region bounded by y =
Dovator [93]

Answer:

V = π ∫₀² (y² − 8y + 6√(2y)) dy

or

V = π ∫₀² (6x − 5x² + x³) dx

Step-by-step explanation:

y₁ = 0.5x²

y₂ = x

First, find the intersections of the curves.

0.5x² = x

x² = 2x

x² − 2x = 0

x (x − 2) = 0

x = 0 or x = 2

So the points of intersection are (0, 0) and (2, 2).

When we revolve this region about the line x = 3, we get a hollow shape that looks like an upside-down funnel, or a volcano.

One option is to use washer method to find the volume, by cutting a thin horizontal slice of thickness dy, inner radius 3−x₁ = 3−√(2y), and outer radius of 3−x₂ = 3−y.

V = ∫₀² π [(3−y)² − (3−√(2y))²] dy

V = ∫₀² π (9 − 6y + y² − 9 + 6√(2y) − 2y) dy

V = π ∫₀² (y² − 8y + 6√(2y)) dy

Another option is to use shell method to find the volume, by cutting a thin vertical slice of thickness dx, radius 3−x, and height y₂−y₁ = x−0.5x².

V = ∫₀² 2π (3 − x) (x − 0.5x²) dx

V = ∫₀² 2π (3x − 1.5x² − x² + 0.5x³) dx

V = ∫₀² 2π (3x − 2.5x² + 0.5x³) dx

V = π ∫₀² (6x − 5x² + x³) dx

The second option is arguably easier to evaluate, but either one will get you the same answer (V = 8π/3).

7 0
4 years ago
Find the area of a triangle with vertices at D(2, 0), E(–1, 0), and F(2, –7).
kati45 [8]
Im suck on the same question 
8 0
3 years ago
Read 2 more answers
Fkhjglirugaeuzikjbvea HELP
kherson [118]

Step-by-step explanation: Isolate the variable by dividing each side by factors that don't contain the variable.

6 0
3 years ago
Find the volume of a right circular cone that has a height of 9 m and a base with a
AlladinOne [14]

Answer:

that is the solution to the question

3 0
4 years ago
(10 points) Consider the initial value problem y′+3y=9t,y(0)=7. Take the Laplace transform of both sides of the given differenti
Rashid [163]

Answer:

The solution

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3 t}

Step-by-step explanation:

<u><em>Explanation</em></u>:-

Consider the initial value problem y′+3 y=9 t,y(0)=7

<em>Step(i)</em>:-

Given differential problem

                           y′+3 y=9 t

<em>Take the Laplace transform of both sides of the differential equation</em>

                L( y′+3 y) = L(9 t)

 <em>Using Formula Transform of derivatives</em>

<em>                 L(y¹(t)) = s y⁻(s)-y(0)</em>

  <em>  By using Laplace transform formula</em>

<em>               </em>L(t) = \frac{1}{S^{2} }<em> </em>

<em>Step(ii):-</em>

Given

             L( y′(t)) + 3 L (y(t)) = 9 L( t)

            s y^{-} (s) - y(0) +  3y^{-}(s) = \frac{9}{s^{2} }

            s y^{-} (s) - 7 +  3y^{-}(s) = \frac{9}{s^{2} }

Taking common y⁻(s) and simplification, we get

             ( s +  3)y^{-}(s) = \frac{9}{s^{2} }+7

             y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

<em>Step(iii</em>):-

<em>By using partial fractions , we get</em>

\frac{9}{s^{2} (s+3} = \frac{A}{s} + \frac{B}{s^{2} } + \frac{C}{s+3}

  \frac{9}{s^{2} (s+3} =  \frac{As(s+3)+B(s+3)+Cs^{2} }{s^{2} (s+3)}

 On simplification we get

  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

 Put s =0 in equation(i)

   9 = B(0+3)

 <em>  B = 9/3 = 3</em>

  Put s = -3 in equation(i)

  9 = C(-3)²

  <em>C = 1</em>

 Given Equation  9 = A s(s+3) +B(s+3) +C(s²) ...(i)

Comparing 'S²' coefficient on both sides, we get

  9 = A s²+3 A s +B(s)+3 B +C(s²)

 <em> 0 = A + C</em>

<em>put C=1 , becomes A = -1</em>

\frac{9}{s^{2} (s+3} = \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}

<u><em>Step(iv):-</em></u>

y^{-}(s) = \frac{9}{s^{2} (s+3}+\frac{7}{s+3}

y^{-}(s)  =9( \frac{-1}{s} + \frac{3}{s^{2} } + \frac{1}{s+3}) + \frac{7}{s+3}

Applying inverse Laplace transform on both sides

L^{-1} (y^{-}(s) ) =L^{-1} (9( \frac{-1}{s}) + L^{-1} (\frac{3}{s^{2} }) + L^{-1} (\frac{1}{s+3}) )+ L^{-1} (\frac{7}{s+3})

<em>By using inverse Laplace transform</em>

<em></em>L^{-1} (\frac{1}{s} ) =1<em></em>

L^{-1} (\frac{1}{s^{2} } ) = \frac{t}{1!}

L^{-1} (\frac{1}{s+a} ) =e^{-at}

<u><em>Final answer</em></u>:-

<em>Now the solution , we get</em>

Y (s) = 9( -1 +3 t + e^{-3 t} ) + 7 e ^{-3t}

           

           

5 0
3 years ago
Other questions:
  • Mags has 2 1/4 pints of milk in her refrigerator. She lukes to have 1/4 with her oatmeal in the morning.How many bowls of oatmea
    5·2 answers
  • Help me asap :3...........
    13·1 answer
  • What causes deflation?
    10·2 answers
  • What will happen if Pinocchio says "my nose will grow now" ??
    8·1 answer
  • Evaluate each expression for the given values of the variables. SHOW ALL WORK
    15·1 answer
  • Heating oil is to be poured at the constant rate of 4.5 gallons per minute into a 400-gallon tank that already contains 115 gall
    5·1 answer
  • Plz plz plz plz help me out
    6·2 answers
  • 12.5% of $100 is what number? percent proption
    6·2 answers
  • Lines l and m are parallel. When they are cut by the two transversals below, a triangle is formed.
    9·1 answer
  • Repartir 310 nueces entre tres personas de modo que la segunda reciba 20 menos que la primera y 40 mas que la tercera
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!