Answer:
x = 2 cm
y = 2 cm
A(max) = 4 cm²
Step-by-step explanation: See Annex
The right isosceles triangle has two 45° angles and the right angle.
tan 45° = 1 = x / 4 - y or x = 4 - y y = 4 - x
A(r) = x* y
Area of the rectangle as a function of x
A(x) = x * ( 4 - x ) A(x) = 4*x - x²
Tacking derivatives on both sides of the equation:
A´(x) = 4 - 2*x A´(x) = 0 4 - 2*x = 0
2*x = 4
x = 2 cm
And y = 4 - 2 = 2 cm
The rectangle of maximum area result to be a square of side 2 cm
A(max) = 2*2 = 4 cm²
To find out if A(x) has a maximum in the point x = 2
We get the second derivative
A´´(x) = -2 A´´(x) < 0 then A(x) has a maximum at x = 2
C. 7. because if you divide the value for the missing term (take 28 for example) and divided it by the value of i (4) you will get 7. (28÷4=7)
We can do this by just adding 14 to 14 until we get a number that is divisible by 10. We can do it this way because it will be a small number. Let's list them out. 14, 28, 42, 56, 70. 70 is divisible by 10, so 70 is the answer.