Answer:
<h2>4/3 Joules </h2>
Step-by-step explanation:
Work is said to be done when force applied to an object causes the object to move through a distance.
Work done = Force * perpendicular distance.

Given Force F = xy i + (y-x) j and a straight line (-1, -2) to (1, 2)
First we need to get the equation of the straight line given.
Given the slope intercept form y = mx+c
m is the slope
c is the intercept
m = y₂-y₁/x₂-x₁
m = 2-(-2)/1-(-1)
m = 4/2
m = 2
To get the slope we will substtutte any f the point and the slope into the formula y = mx+c
Using the point (1,2)
2 = 2+c
c = 0
y = 2x
Substituting y = 2x into the value of the force F = xy i + (y-x) j we will have;
F = x(2x) i + (2x - x) j
Using the coordinate (1, 2) as the value of s
![W = \int\limits^a_b ({2x^2 i + x j}) \, (i+2j)\\W = \int\limits^a_b ({2x^{2}+2x }) \, dx \\W = [\frac{2x^{3} }{3} +x^{2} ]\left \ x_2=1} \atop {x_1=-1}} \right.\\W = (2(1)^3/3 + 1^2) - (2(-1)^3/3 + (-1)^2)\\W =(2/3+1) - (-2/3+1)\\W = 2/3+2/3+1-1\\W = 4/3 Joules](https://tex.z-dn.net/?f=W%20%3D%20%5Cint%5Climits%5Ea_b%20%28%7B2x%5E2%20i%20%2B%20x%20j%7D%29%20%5C%2C%20%28i%2B2j%29%5C%5CW%20%3D%20%5Cint%5Climits%5Ea_b%20%28%7B2x%5E%7B2%7D%2B2x%20%7D%29%20%5C%2C%20dx%20%5C%5CW%20%3D%20%5B%5Cfrac%7B2x%5E%7B3%7D%20%7D%7B3%7D%20%2Bx%5E%7B2%7D%20%5D%5Cleft%20%5C%20x_2%3D1%7D%20%5Catop%20%7Bx_1%3D-1%7D%7D%20%5Cright.%5C%5CW%20%3D%20%282%281%29%5E3%2F3%20%2B%201%5E2%29%20-%20%20%282%28-1%29%5E3%2F3%20%2B%20%28-1%29%5E2%29%5C%5CW%20%3D%282%2F3%2B1%29%20-%20%28-2%2F3%2B1%29%5C%5CW%20%3D%202%2F3%2B2%2F3%2B1-1%5C%5CW%20%3D%204%2F3%20Joules)
Answer: x = -3, y = 2, z = 4
Step-by-step explanation:
(x1,y1) = (-2,7)
m = -5
(x,y) = (a,2)
Forming the equation,
(y-y1) = m(x-x1)
y - 7 = -5[x - (-2)]
y - 7 = -5x - 10
y + 5x = -3
Putting the values of (x,y) we get,
2 + 5a = -3
5a = -5
a = -1
The graph represents a function but the table does not. The reason for this is that one input value (70) in the table is associated with two output values (54.6 and 53.11), which is a sure sign that we do NOT have a function here.