Answer:
x<2
Step-by-step explanation:
x- 2 <0
x < 2

<h2><em><u>Hello</u></em><em><u> </u></em><em><u>and</u></em><em><u> </u></em><em><u>sorry</u></em><em><u> </u></em><em><u>but</u></em><em><u> </u></em><em><u>it</u></em><em><u>'</u></em><em><u>s</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>Gatheted</u></em><em><u> </u></em><em><u>Question</u></em><em><u> </u></em><em><u>Can</u></em><em><u> </u></em><em><u>you</u></em><em><u> </u></em><em><u>fix</u></em><em><u> </u></em><em><u>it</u></em><em><u> </u></em><em><u>Can</u></em><em><u> </u></em><em><u>you</u></em><em><u>?</u></em><em><u> </u></em></h2>
<em><u>Sorry</u></em><em><u> </u></em><em><u>for</u></em><em><u> </u></em><em><u>answering</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>nonsense</u></em><em><u> </u></em>
<u>#BrainliestBunch</u>
R=(3V4<span>Home: Kyle's ConverterKyle's CalculatorsKyle's Conversion Blog</span>Volume of a Sphere CalculatorReturn to List of Free Calculators<span><span>Sphere VolumeFor Finding Volume of a SphereResult:
523.599</span><span>radius (r)units</span><span>decimals<span> -3 -2 -1 0 1 2 3 4 5 6 7 8 9 </span></span><span>A sphere with a radius of 5 units has a volume of 523.599 cubed units.This calculator and more easy to use calculators waiting at www.KylesCalculators.com</span></span> Calculating the Volume of a Sphere:
Volume (denoted 'V') of a sphere with a known radius (denoted 'r') can be calculated using the formula below:
V = 4/3(PI*r3)
In plain english the volume of a sphere can be calculated by taking four-thirds of the product of radius (r) cubed and PI.
You can approximated PI using: 3.14159. If the number you are given for the radius does not have a lot of digits you may use a shorter approximation. If the radius you are given has a lot of digits then you may need to use a longer approximation.
Here is a step-by-step case that illustrates how to find the volume of a sphere with a radius of 5 meters. We'll u
π)⅓
Answer:
√20 units.
Step-by-step explanation:
Please see attached photo for diagram.
The other leg of the triangle is x as shown in the attached photo.
Using the pythagoras theory, we can obtain the the value of x as follow:
x² = 4² + 2²
x² = 16 + 4
x² = 20
Take the square root of both side.
x = √20 units
Therefore, the value of the other leg x of the triangle is √20 units