The question is missing. Here is the complete question.
Let y =
and u =
. Write y as the sum of a vector in Span(u) and a vector orthogonal to u.
Answer: y = ![\left[\begin{array}{ccc}\frac{21}{10} \\ \frac{3}{10} \end{array}\right] + \left[\begin{array}{ccc}\frac{-1}{10}\\ \frac{57}{10} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B21%7D%7B10%7D%20%5C%5C%20%5Cfrac%7B3%7D%7B10%7D%20%5Cend%7Barray%7D%5Cright%5D%20%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D%5Cfrac%7B-1%7D%7B10%7D%5C%5C%20%5Cfrac%7B57%7D%7B10%7D%20%5Cend%7Barray%7D%5Cright%5D)
Step-by-step explanation: The sum of vectors is given by
y =
+ z
where
is in Span(u);
vector z is orthogonal to it;
First you have to compute the orthogonal projection
of y:
= proj y = 
Calculating orthogonal projection:
.
= ![\left[\begin{array}{c}9\\6\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D9%5C%5C6%5Cend%7Barray%7D%5Cright%5D)
.
= ![\left[\begin{array}{c}49\\1\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D49%5C%5C1%5Cend%7Barray%7D%5Cright%5D)



![y_{1} = \frac{3}{10}.\left[\begin{array}{c}7\\1\end{array}\right]](https://tex.z-dn.net/?f=y_%7B1%7D%20%3D%20%5Cfrac%7B3%7D%7B10%7D.%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D7%5C%5C1%5Cend%7Barray%7D%5Cright%5D)
![y_{1} = \left[\begin{array}{c}\frac{21}{10} \\\frac{3}{10} \end{array}\right]](https://tex.z-dn.net/?f=y_%7B1%7D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%5Cfrac%7B21%7D%7B10%7D%20%5C%5C%5Cfrac%7B3%7D%7B10%7D%20%5Cend%7Barray%7D%5Cright%5D)
Calculating vector z:
z = y - 
z = ![\left[\begin{array}{c}2\\6\end{array}\right] - \left[\begin{array}{c}\frac{21}{10} \\\frac{3}{10} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D2%5C%5C6%5Cend%7Barray%7D%5Cright%5D%20-%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%5Cfrac%7B21%7D%7B10%7D%20%5C%5C%5Cfrac%7B3%7D%7B10%7D%20%5Cend%7Barray%7D%5Cright%5D)
z = ![\left[\begin{array}{c}\frac{-1}{10} \\\frac{57}{10} \end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%5Cfrac%7B-1%7D%7B10%7D%20%5C%5C%5Cfrac%7B57%7D%7B10%7D%20%5Cend%7Barray%7D%5Cright%5D)
Writing y as the sum:
![y = \left[\begin{array}{c}\frac{21}{10} \\\frac{3}{10} \end{array}\right] + \left[\begin{array}{c}\frac{-1}{10} \\\frac{57}{10} \end{array}\right]](https://tex.z-dn.net/?f=y%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%5Cfrac%7B21%7D%7B10%7D%20%5C%5C%5Cfrac%7B3%7D%7B10%7D%20%5Cend%7Barray%7D%5Cright%5D%20%2B%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D%5Cfrac%7B-1%7D%7B10%7D%20%5C%5C%5Cfrac%7B57%7D%7B10%7D%20%5Cend%7Barray%7D%5Cright%5D)
It's the second one for sure
Answer:
2/36 (5.556%)
I believe so correct me if I am wrong
<u>Out of all given equations, the following methods can be used to solve a system of equations:</u>
- graphing
- substitution
- addition
Answer: Option B, C, and E
<u>Step-by-step explanation:</u>
There are three methods of solving the system of equations as follows:
- Elimination (addition) method
- Graphic method
- Substitution method.
Substitution method: This involves solving one of the variable equations (depending on what you choose) and putting it back into the other equation and "substituting" for the selected variable and resolution for the second. Then solve the first variable again.
Elimination method: This method for solving systems of equations is also known as the addition method. To solve the equation systems by adding or subtracting from the equations to cancel out the common variables
Graphic method: It is used to find a solution to two linear equations. First, expand each equation by “y = ” or replace each equation by y = mx + b. Convert the equations to y = mx + b and prepare a function table.
Answer:
90
Step-by-step explanation:
How many zero can be found in the answer and why? Hi, I want to write ^ to designate powers so I will write 50^20 for 50 power of 20. Since no power of two ends with a zero the number of zeros in (50^20)(20^50) is 90.