Answer:
N = N0 e^-x t is the general form for Half-Life decay of atoms
B would be the correct choice
56% of 75 = 42
80% of 60 = 48
The question asks for the difference, so there are 6 additional people who like salsa music
Answer:
1) Combine like terms
2) ![\sqrt[3]{x} =3](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%7D%20%3D3)
3) cube both sides of the equation
4) ![4\sqrt[3]{27} +8\sqrt[3]{27}=36](https://tex.z-dn.net/?f=4%5Csqrt%5B3%5D%7B27%7D%20%2B8%5Csqrt%5B3%5D%7B27%7D%3D36)
5) 4(3) + 8(3) = 36
Step-by-step explanation:
1) Combine like terms
2) ![\sqrt[3]{x} =3](https://tex.z-dn.net/?f=%5Csqrt%5B3%5D%7Bx%7D%20%3D3)
3) cube both sides of the equation
4) ![4\sqrt[3]{27} +8\sqrt[3]{27}=36](https://tex.z-dn.net/?f=4%5Csqrt%5B3%5D%7B27%7D%20%2B8%5Csqrt%5B3%5D%7B27%7D%3D36)
5) 4(3) + 8(3) = 36
Answer:
Step-by-step explanation:
Given
See attachment for figure


Required
The scale factor (k)
Since point C is the center of dilation, the scale factor (k) is calculated using:

So, we have:



Answer:

General Formulas and Concepts:
<u>Calculus</u>
Limits
Limit Rule [Variable Direct Substitution]: 
Limit Rule [Variable Direct Substitution Exponential]: 
Limit Property [Multiplied Constant]: 
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

<u>Step 2: Solve</u>
- Rewrite [Limit Property - Multiplied Constant]:
![\displaystyle \lim_{x \to 0} \frac{1}{4}[f(x)]^4 = \frac{1}{4} \lim_{x \to 0} [f(x)]^4](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B1%7D%7B4%7D%5Bf%28x%29%5D%5E4%20%3D%20%5Cfrac%7B1%7D%7B4%7D%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Bf%28x%29%5D%5E4)
- Evaluate limit [Limit Rule - Variable Direct Substitution Exponential]:
![\displaystyle \lim_{x \to 0} \frac{1}{4}[f(x)]^4 = \frac{1}{4}(4^4)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B1%7D%7B4%7D%5Bf%28x%29%5D%5E4%20%3D%20%5Cfrac%7B1%7D%7B4%7D%284%5E4%29)
- Simplify:
![\displaystyle \lim_{x \to 0} \frac{1}{4}[f(x)]^4 = 64](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clim_%7Bx%20%5Cto%200%7D%20%5Cfrac%7B1%7D%7B4%7D%5Bf%28x%29%5D%5E4%20%3D%2064)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Limits
Book: College Calculus 10e