Thanks again you are VERY sweet and kind!
Answer:
y = - 2x + 6
Step-by-step explanation:
The equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
Calculate m using the slope formula
m = 
with (x₁, y₁ ) = (1, 4 ) and (x₂, y₂ ) = (2, 2 )
m =
=
= - 2 , then
y = - 2x + c ← is the partial equation
To find c substitute either of the 2 points into the partial equation
Using (2, 2 ) , then
2 = - 4 + c ⇒ c = 2 + 4 = 6
y = - 2x + 6 ← equation of line
Step-by-step explanation:
End behavior of a polynomial function is the behavior of the graph of f(x) as x tends towards infinity in the positive or negative sense.
Given function:
f(x) = 2x⁶ - 2x² - 5
To find the end behavior of a function:
- Find the degree of the function. it is the highest power of the variable.
Here the highest power is 6
- Find the value of the leading coefficient. It is the number before the variable with the highest power.
Here it is +2
We observe that the degree of the function is even
Also the leading coefficient is positive.
For even degree and positive leading coefficient, the end behavior of a graph is:
x → ∞ , f(x) = +∞
x → -∞ , f(x) = +∞
The graph is similar to the attached image
Learn more:
End behavior brainly.com/question/3097531
#learnwithBrainly
Answer:

Step-by-step explanation:
r = Radius of semicircle = 
Area of semicircle is given by

The area of the semicircle is
.
9514 1404 393
Answer:
(a) 6² +3² +1² +1² = 47
(b) 5² +4² +2² +1² +1² = 47
(c) 3³ +4² +2² = 47
Step-by-step explanation:
It can work reasonably well to start with the largest square less than the target number, repeating that approach for the remaining differences. When more squares than necessary are asked for, then the first square chosen may need to be the square of a number 1 less than the largest possible.
The approach where a cube is required can work the same way.
(a) floor(√47) = 6; floor(√(47 -6^2)) = 3; floor(√(47 -45)) = 1; floor(√(47-46)) = 1
__
(b) floor(√47 -1) = 5; floor(√(47-25)) = 4; ...
__
(c) floor(∛47) = 3; floor(√(47 -27)) = 4; floor(√(47 -43)) = 2