Answer:
uahabsihsb
Step-by-step explanation:
- shahabajwnznjsiay
- znsbsk
- sksisn
Answer:
The 95% confidence interval for the true mean cholesterol content, μ, of all such eggs is between 226.01 and 233.99 milligrams.
Step-by-step explanation:
We have that to find our
level, that is the subtraction of 1 by the confidence interval divided by 2. So:

Now, we have to find z in the Ztable as such z has a pvalue of
.
So it is z with a pvalue of
, so 
Now, find M as such

In which
is the standard deviation of the population and n is the size of the sample.

The lower end of the interval is the sample mean subtracted by M. So it is 230 - 3.99 = 226.01
The upper end of the interval is the sample mean added to M. So it is 230 + 3.99 = 233.99.
The 95% confidence interval for the true mean cholesterol content, μ, of all such eggs is between 226.01 and 233.99 milligrams.
Answer:
0.9999
Step-by-step explanation:
Let X be the random variable that measures the time that a switch will survive.
If X has an exponential distribution with an average life β=44, then the probability that a switch will survive less than n years is given by
So, the probability that a switch fails in the first year is
Now we have 100 of these switches installed in different systems, and let Y be the random variable that measures the the probability that exactly k switches will fail in the first year.
Y can be modeled with a binomial distribution where the probability of “success” (failure of a switch) equals 0.0225 and
where
equals combinations of 100 taken k at a time.
The probability that at most 15 fail during the first year is